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Preface

Probably the most common reason today for someone to come to see me for 
advice is for a sample size calculation, a calculation that, although relatively 
straightforward, is often left in the domain of a statistician.

Although the sample size calculated could easily be the end of matters, 
with time I have come to realise that the sample size of a trial is a process 
and not an end in itself.

Many years ago, when I was just starting out in my career, I was in dis-
pute over a study being undertaken. An unscheduled interim analysis was 
requested, and I pushed back as the study had barely started; we had very 
little data, and I knew the request was more to do with politics—to have 
some results to present by year end—than science. I remember taking wise 
counsel from a sage statistician, who advised that sometimes you just have 
to let people fall on their face. On their face they royally fell.

Falling on my own face a number of times has provided salutary les-
sons. Trials that have been conducted that when done and reported failed to 
reject the null hypothesis less because the alternative was false but because 
the basic trial assumptions—around such aspects as trial variability and 
response rates—were optimistic or wrong.

I have always been uncomfortable calculating a sample size for a study, 
costing several million pounds, for which, for example, the variability used 
for the calculation was estimated through reading data from a graph in an 
article published in journal that was not very prestigious, and so with time 
I have come to the view that the imprecision of estimates in trials should be 
allowed for in calculations or at the very least investigated in the context of 
seeing how sensitive the study is to the assumptions being made.

The three most important factors in any study are design, design, design 
and a sample size calculation is a major component of the design. If you 
get your analysis wrong, it can be redone; however, if you get your design 
wrong—for example underestimating the sample size—you are scuppered. 
Good statistics cannot rescue bad designs; indeed there is an argument that 
if you have to do complicated statistics you have gotten your design wrong. 
I would further argue that you should spend as long designing a trial as 
analysing it. This is where the greatest leverage is and where you can make 
a bigger impact on a given study.

So you have calculated the sample size from estimates you yourself have 
obtained, you have investigated the sensitivity of the study to these estimates, 
you think the design is robust. But why stop there? When NASA launches a 
probe to Mars it does not point it in the general direction of the red planet, 
cross collected fingers and hope it hits the target; it reviews progress and 
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tinkers and alters the trajectory. Clinical trials should be equally adaptive, 
and we should not wait with bated breath to the end of the study. Even 
though you are reasonably confident that the sample size is sound, it should 
not preclude sample size re-estimation during the course of the trial.

This is why I said that a sample size is a process, not an end unto itself. 
You first have to obtain estimated values to go into the sample size calcula-
tion. You then calculate your sample size, and you investigate how robust 
it is to the estimates. Finally, you implement sample size re-estimation as 
appropriate.

This book will be of relevance to researchers undertaking clinical research 
in the pharmaceutical and public sector. The focus of the book is on clini-
cal trials, although it can be applied to other forms of prospective design. 
The book itself is based on a short course that has been presented a number 
of times, and the worked examples and problems are based on real-world 
issues.

Given the topic of the book, mentioning formulae is unavoidable. In addi-
tion the book is a little intentionally dry to enable the quick finding of an 
appropriate formula, application of a formula and a worked example. Given 
this, however, all results are presented within a practical context and with 
the addition of useful hints and tips to optimise sample size calculations.

Steven A. Julious
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1
Introduction

This chapter describes the background of randomised controlled clinical 
trials and the main factors that should be considered in their design. The 
description of the issues associated with clinical trial design is made in the 
context of assessing innovative therapies. The different types of clinical trials, 
for different objectives, are then described in detail. It is highlighted how 
these different objectives have an impact on study design with respect to 
derivation of formulae for sample size calculations.

1.1 Background to Randomised Controlled Trials

Since the first reported ‘modern’ randomised clinical trial (Medical 
Research Council, 1948), clinical trials have become a central component 
in the assessment of new therapies. They have contributed to improve-
ments in health care as measured by an increase in life expectancy by an 
average of 3 to 7 years and relief of poor quality of life related to chronic 
disease by an average of 5 years (Chalmers, 1998; Bunker, Frazier and 
Mosteller, 1994).

The primary objective of any clinical trial is to obtain an unbiased and reli-
able assessment of a given regimen response independent of any known or 
unknown prognostic factors; that is, clinical trials ensure that there is no sys-
tematic difference between treatments. Clinical trials are therefore designed 
to meet this primary objective (Julious and Zariffa, 2002). They do this first 
by ensuring, as much as possible, that the patients studied in the various 
regimen arms are objectively similar with reference to all predetermined 
relevant factors other than the regimens themselves (e.g. in terms of disease 
severity, demography, study procedures etc.). Second, they make sure that 
the assessment of the regimen response is independent of a given subject’s 
regimen; finally, an appropriate control is included to quantify a given regi-
men response. To ensure the primary objective is met Julious and Zariffa 
(2002) described how the essential principles of clinical trial design can be 
summarised in terms of the ABCs of Allocation at random, Blinded assessment 
of outcome and Control with respect to a comparator group. These principles 
hold regardless of the type of trial.
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1.2 Types of Clinical Trial

When planning a trial an essential step is the calculation of a sample size 
as studies that are either too small or too large may be judged unethical 
(Altman, 1980). For example, a study that is too large could have met the 
objectives of the trial before the actual study end had been reached, so some 
patients may have unnecessarily entered the trial and been exposed to a 
treatment with little or no benefit. A trial that is too small will have little 
chance of meeting the study objectives, and patients may be put through the 
potential trauma of a trial for no tangible benefit. This chapter, based on the 
work of Julious (2004d), discusses in detail the computation of sample sizes 
appropriate for

 1. Superiority trials

 2. Equivalence trials

 3. Non-inferiority trials

 4. As-good-as-or-better trials

 5. Bioequivalence trials

 6. Trials to a given precision

A distinction therefore is drawn to emphasise differences in trials designed 
to demonstrate ‘superiority’ and trials designed to demonstrate ‘equivalence’ 
or ‘non-inferiority.’ This is discussed with an emphasis on how differences 
in the null hypothesis can have an impact on calculations. The International 
Conference on Harmonisation of Technical Requirements for Registration 
of Pharmaceuticals for Human Use (ICH) guidelines ICH E3 (1996) and ICH 
E9 (1998) provide general guidance on selecting the sample size for a clinical 
trial. The ICH E9 (1998) guideline states that:

The number of subjects in a clinical trial should always be large enough 

to provide a reliable answer to the questions addressed. This number is 

usually determined by the primary objective of the trial.  The method 

by which the sample size is calculated should be given in the protocol 

together with any quantities used in the calculations (such as variances, 

mean values, response rates, event rates, differences to be detected).

This book is primarily written on the premise that just two treatments are 
to be compared in the clinical trial, and two study designs are discussed: 
parallel group and cross-over.

With a parallel group design subjects are assigned at random to the two 
treatments to form two treatment groups. It is hoped at the end of the trial 
that the two groups are the same in all respects other than the treatment 
received so that an unbiased assessment of treatment effect can be made.
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With a cross-over trial all subjects receive both the treatments but the order 
that subjects receive the treatments is randomised. The big assumption here 
is that prior to starting the second treatment all subjects return to baseline, 
and that the order in which subjects receive treatment does not affect their 
response to treatment. Crossover trials cannot be used therefore in degen-
erative conditions in which subjects get worse over time. Also, they are more 
sensitive to bias than parallel group designs (Julious and Zariffa, 2002).

1.3 Assessing Evidence from Trials

Since it is rarely possible to collect information on an entire population, the 
aim of clinical trials (in the context of this book) is to use information from 
a sample to draw conclusions (or make inferences) about the population of 
interest. This inference is facilitated through making assumptions about the 
underlying distribution of the outcome of interest such that an appropriate 
theoretical model can be applied to describe outcome in the population as a 
whole from the clinical trial.

Note it is usual a priori to any analysis to make an assumption regard-
ing the underlying distribution of your outcome measure for the trial. These 
assumptions are then to be investigated through various plots and figures 
for the observed data.

In the context of this book the population is a theoretical concept used 
for describing an entire group. One way of describing the distribution of 
a measurement in a population is by use of a suitable theoretical prob-
ability distribution.

1.3.1 The Normal Distribution

The Normal, or Gaussian, distribution (named in honour of C. F. Gauss, 
1777–1855, a German mathematician) is the most important theoretical 
probability distribution in statistics. The distribution curve of data that are 
Normally distributed has a characteristic shape; it is bell shaped and sym-
metrical about a single peak (Figure 1.1). The Normal distribution is described 
completely by two parameters, the mean μ and the standard deviation . 
This means that for any Normally distributed variable, once the mean and 
variance 2 are known (or estimated), it is possible to calculate the probabil-
ity distribution for observations in a population.

1.3.2 The Central Limit Theorem

The Central Limit Theorem (or the law of large numbers) states that given any 
series of independent, identically distributed random variables, their means 
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will tend to a Normal distribution as the number of variables increases. Put 
another way, the distribution of sample means drawn from a population will 
be Normally distributed whatever the distribution of the actual data in the 
population as long as the samples are large enough.

Each mean estimated from a sample is an unbiased estimate of the true 
population mean, and using the Central Limit Theorem we can infer that 
95% of sample means will lie within 1.96 standard errors (of the mean) of 
the population mean. As we do not usually know the population mean the 
more important inference is that with the sample mean we are 95% confi-
dent that the population mean will fall within 1.96 standard errors of the 
sample mean.

The Normal distribution and the Central Limit Theorem are important as 
they underpin much of the subsequent statistical theory outlined in both this 
and subsequent chapters. This is because although only Chapters 3 through 
8 discuss calculations for clinical trials in which the primary outcome is 
anticipated to take a Normal form, approximation to the Normal distribution 
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FIGURE 1.1 The Normal distribution (a) Mean 0, SD of 0.25; (b) Mean 0, SD of 0.5; (c) Mean 0, 

SD of 1; (d) Mean 0, SD of 2.
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(and what to do when Normal approximation is inappropriate) is important 
to subsequent chapters on binary and ordinal data.

To illustrate the Central Limit Theorem, consider the situation of tossing 
a coin. The distribution of the individual coin tosses would be uniform, 
half heads and half tails. That is, each outcome has an equal probability 
of being selected, and the shape of the probability density function of 
theoretical distribution is represented by a rectangle. According to the 
central limit theorem, if you were to select repeated random samples of 
the same size from this distribution and then calculate the means of these 
different samples, the distribution of the means would be approximately 
Normal, and this approximation would improve as the size of each sample 
increased. Figure 1.2 is taken from a recent practical with 60 students in 
a lecture. Figure 1.2a represents the distribution of the number of heads 
for 60 simulated samples of size 5. Even with such a small sample size the 
approximation to the Normal is remarkable, whilst repeating the experi-
ment with samples of size 30 improves the fit to the Normal distribution 
(Figure 1.2b).

In reality, as we usually only take a single sample, we can use the Central 
Limit Theorem to construct an interval within which we are reasonably con-
fident the true population mean will be included, that is, through calculation 
of a confidence interval.

1.3.3 Frequentist Approaches

Clinical trials are usually assessed through a priori declaring a null hypoth-
esis, depending on the objective of the trial, and then formally testing this 
null hypothesis with empirical trial data.
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An advantage of a sample size calculation for an applied medical statisti-
cian is that often it is the first time that formal consideration is given by a 
study team to some of the key aspects of the trial, such as primary objective, 
primary endpoint, and effect size of interest. Subsequent chapters discuss 
the sample size calculations for different objectives and endpoints. In this 
chapter we introduce the different types of clinical trial.

1.3.3.1 Hypothesis Testing and Estimation

Consider the hypothetical example of a trial designed to examine the effective-
ness of two treatments for migraine. In the trial patients are to be randomly 
allocated to two groups corresponding to either treatment A or treatment B. 
Suppose the primary objective of the trial is to investigate whether there is 
a difference between the two groups with respect to a pain outcome; in this 
case we could carry out a significance test and calculate a P-value (a hypoth-
esis test). The context here is that of a superiority trial. Other types of trial are 
discussed in this chapter and throughout the book.

1.3.3.2 Hypothesis Testing: Superiority Trials

In designing a clinical trial it is important to have a clear research question 
and to know the outcome variable to be compared. Once the research ques-
tion has been stated, the null and alternative hypotheses can be formulated. 
For a superiority trial the null hypothesis H0 is usually of the form of no dif-
ference in the outcome of interest between the study groups. The study or 
alternative hypothesis H1 would then usually state that there is a difference 
between the study groups.

In lay terms the null hypothesis is what we are investigating, whilst the 
alternative is what we wish to show, that is:

H0:  We are investigating whether there is a difference between 
treatments.

H1: We wish to show there is a difference between treatments.

Often when first writing H0 and H1 it is what the investigator wishes to 
show that is written as H0. Hence, H0 and H1 can be confused. The confu-
sion can arise as trials are usually named after the alternative hypothesis; for 
example, for an equivalence trial the H0 is that two treatments differ, while 
the alternative is that they are equivalent. The same is true for non-inferior-
ity and bioequivalence trials.

For the situation now, a superiority trial, we wish to compare a new 
migraine therapy against a control, and we are investigating the null hypoth-
esis H0 of no difference between treatments. We therefore wish to show that 
this null hypothesis is false and demonstrate that there is a difference at a 
given level of significance.
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In general, the direction of the difference (e.g. that treatment A is better 
than treatment B) is not specified, and this is known as a two-sided (or two-
tailed) test. By specifying no direction we investigate both the possibility 
that A is better than B and the possibility that B is better than A. If a direction 
is specified this is referred to as a one-sided (one-tailed) test, and we would be 
evaluating only whether A is better than B as the possibility of B being better 
than A is of no interest. There are further discussions of one-tailed and two-
tailed tests when describing the different types of trial later in this chapter.

The study team began designing a trial with a research question. For the 
pain trial, the research question of interest was therefore

For patients with chronic pain which treatment for pain is the most 
effective?

There may be several outcomes for this study, such as mean pain score, alle-
viation of symptoms or time to alleviation. Assuming we are interested in 
reducing the mean pain score, then the null hypothesis H0 for this research 
question would be:

There is no difference in the mean pain score between treatment A 
and treatment B groups.

The alternative hypothesis H1 would be

There is a difference in the mean pain score between the two treat-
ment groups.

Having a priori set the null and alternative hypotheses and subsequently 
performed the trial, collected the data and observed the outcomes, the next 
stage is to carry out a significance test. This is done by first calculating a 
test statistic using the study data. This test statistic is then compared to a 
theoretical value under the null hypothesis to obtain a P-value. The final and 
most crucial stage of hypothesis testing is to make a decision based on the 
P-value. To do this it is necessary to understand first what a P-value is and 
what it is not.

So, what does a P-value mean? A P-value is the probability of obtaining the 
study results (or results more extreme) if the null hypothesis is true. Common 
misinterpretations of the P-value are that it is either the probability of the 
data having arisen by chance or the probability that the observed effect is 
not a real one. The distinction between these incorrect definitions and the 
true definition is the absence of the phrase ‘when the null hypothesis is true.’ 
The omission of this phrase leads to the incorrect belief that it is possible to 
evaluate the probability of the observed effect being a real one. The observed 
effect in the sample is genuine, but what is true in the population is not 
known. All that can be known with a P-value is, if there truly is no difference 
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in the population, how likely is the result obtained (from the sample). Thus a 
small P-value indicates that the difference obtained is unlikely if there genu-
inely was no difference in the population.

In practice, what happens in a trial is that the null hypothesis that two treat-
ments are the same is stated, that is, A  B or A  B  0. The trial is then 
conducted, and a particular difference d is observed where x x dA B . Due 
to pure randomness even if the two treatments are truly the same we would 
seldom actually observe x xA B 0 but some random difference. Now if d is 
small (say a 1 mm mean difference in VAS pain score), then the probability 
of seeing this difference under the null hypothesis could be very high, say 
P  0.995. If a larger difference is observed, then the probability of seeing this 
difference by chance is reduced; with a mean difference of 5 mm, the P-value 
could be P  0.562. As the difference increases, the P-value falls such that a 
difference of 20 mm may equate to P  0.021. In this relationship (illustrated in 
Figure 1.3) as d increases the P-value (under the null hypothesis) falls.

It is important to remember that a P-value is a probability and its value 
can vary between 0 and 1. A ‘small’ P-value, say close to zero, indicates 
that the results obtained are unlikely when the null hypothesis is true, and 
the null hypothesis is rejected. Alternatively, if the P-value is ‘large,’ then 
the results obtained are likely when the null hypothesis is true, and the 
null hypothesis is not rejected. But how small is small? Conventionally the 
cut-off value or two-sided significance level for declaring that a particular 
result is statistically significant is set at 0.05 (or 5%). Thus if the P-value is 
less than this value the null hypothesis (of no difference) is rejected, and the 
result is said to be statistically significant at the 5% or 0.05 level (Table 1.1). 
For the pain example, if the P-value associated with the mean difference in 
the VAS pain score was 0.01, then as this is less than the cut-off value of 0.05 

P

FIGURE 1.3 The relationship between the observed difference and the P-value under the null 

hypothesis.
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we would say that there was a statistically significant difference in the pain 
score between the two groups at the 5% level.

The choice of 5% is somewhat arbitrary, and though it is commonly used 
as a standard level for statistical significance its use is not universal. Even 
where it is, one study that is statistically significant at the 5% level is not 
usually enough to change practice; replication is usually required (i.e. at 
least one more study with statistically significant results). For example, to 
get a regulatory license for a new drug usually two statistically significant 
studies are required at the 5% level, which equates to a single study at the 
0.00125 significance level. It is for this reason that larger ‘super studies’ are 
conducted to get significance levels that would change practice (i.e. a lot less 
than 5% and maybe nearer to 0.1%).

The origin of setting the level of statistical significance at 5% is not really 
known. Much of what we refer to as statistical inference is based on the work 
of R. A. Fisher (1890–1962), who first used 5% as a level of statistical signifi-
cance acceptable to reject the null hypothesis. One theory is that 5% was 
used because Fisher published some statistical tables with different levels of 
statistical significance, and 5% was the middle column (another is that five is 
the number of toes on Fisher’s foot, which maybe is just as plausible).

An exercise to do, for instance with students, to demonstrate empirically that 
5% is a reasonable level for statistical significance is to toss a coin and tell the 
students whether a head or a tail has been observed, but keep saying heads. 
After around six tosses ask the students when they stopped believing the toss 
indication was the truth. Usually about half would say after four tosses and 
half after five. The probability of getting four heads in a row is 0.063, and the 
probability of getting five heads in a row is 0.031, hence 5% is a figure about 
which most people would intuitively start to disbelieve a hypothesis.

The significance level of 5% has to a degree become a tablet of stone, which 
could be considered strange given that it may well be based on a gut feeling. 
However, it is such a tablet of stone that it is not unknown for a P-value to 
be presented as P  0.049999993 as P must be less than 0.05 to be significant, 
and written to two decimal places P  0.05 is considered to present far less 
evidence for rejection of the null hypothesis than P  0.049999993.

Although the decision to reject or not reject the null hypothesis may seem 
clear-cut, it is possible that a mistake may be made, as can be seen from the 
shaded cells of Table 1.2. For example a 5% significance level means that we 

TABLE 1.1

Statistical Significance
 

P  0.05 P  0.05
 

Result is Statistically significant Not statistically significant

Decision Sufficient evidence to reject 

the null hypothesis

Insufficient evidence to 

reject the null hypothesis
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would only expect to see the observed difference (or one greater) 5% of the 
time under the null hypothesis. Alternatively we can rephrase this to state 
that even if the two treatments are the same 5% of the time we will conclude 
that they are not, and we will make an error. This error is known as a Type I 
error. Therefore, whatever is decided, the decision may correctly reflect what 
is true in the population: the null hypothesis is rejected when in fact it is false, 
or the null hypothesis is not rejected when in fact it is true. Alternatively, it 
may not reflect what is true in the population: the null hypothesis may be 
rejected when it is in fact true, which would lead us to a false positive and a 
Type I error, or the null hypothesis may not be rejected when in fact it is false. 
This would lead to a false negative and a Type II error. Acceptable levels of 
the Type I and Type II error rates are set before the study is conducted. As 
mentioned the usual level for declaring a result to be statistically significant 
is set at a two-sided level of 0.05 prior to an analysis (i.e. the Type I error rate 
is set at 0.05 or 5%). In doing this we are stating that the maximum acceptable 
probability of rejecting the null when it is in fact true (committing a Type I 
error,  error rate) is 0.05. The P-value that is then obtained from our analysis 
of the data gives us the probability of committing a Type I error (making a 
false-positive error).

The concepts of Type I and Type II errors as well as study power (1 − Type II 
error) are dealt with further in this chapter and throughout the book as these 
are important components of sample size calculation. Here, however, it must 
be highlighted that they are set a priori when considering the null and alter-
native hypotheses.

1.3.3.3 Statistical and Clinical Significance or Importance

Discussion so far has dealt with hypothesis testing. However, in addition 
to statistical significance, it is useful to consider the concept of clinical 
significance or importance. Whilst a result may be statistically signifi-
cant, it may not be clinically important; conversely an estimated differ-
ence that is clinically important may not be statistically significant. For 
example, consider a large study comparing two treatments for high blood 
pressure; the results suggest that there is a statistically significant differ-
ence (P  0.023) in the amount by which blood pressure is lowered. This 
P-value relates to a difference of 3 mmHg between the two treatments. 

TABLE 1.2

Making a Decision
 

The Null Hypothesis Is Actually

Decide to      False True
 

Reject the null hypothesis The power Type I error

Reject the null hypothesis Type II error Correct decision
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Whilst the difference is statistically significant, it could be argued that a 
difference of 3 mmHg is not clinically important. Hence, although there 
is a statistically significant difference this difference may not be suffi-
ciently large enough to convince anyone that there is a truly important 
clinical difference.

This is not a trivial point. Often P-values alone are quoted, and infer-
ences about differences between groups are made based on this one statistic. 
Statistically significant P-values may be masking differences that have little 
clinical importance. Conversely it may be possible to have a P-value greater 
than the magic 5% but for there to be a genuine difference between groups: 
Absence of evidence does not equate to evidence of absence.

The issue of clinical significance is particularly important for non-inferiority 
and equivalence trials, discussed separately in this chapter, for which margins 
are set that confidence intervals must preclude. P-values are seldom quoted here. 
These margins are interpreted in terms of clinically meaningful differences.

1.4 Superiority Trials

As discussed, in a superiority trial the objective is to determine whether there 
is evidence of a statistical difference in the comparison of interest between 
the regimens with reference to the null hypothesis that the regimens are the 
same. The null (H0) and alternative (H1) hypotheses may take the form

H0:  The two treatments have equal effect with respect to the mean 
response ( A  B).

H1:  The two treatments are different with respect to the mean 
response ( A  B).

In the definition of the null and alternative hypotheses A and B refer to the 
population mean response on regimens A and B, respectively. In testing the 
null hypothesis there are two errors we can make:

 I. Rejecting H0 when it is actually true.

 II. Retaining H0 when it is actually false.

As described, these errors are usually referred to as Type I and Type II 
errors, respectively (Neyman and Pearson, 1928, 1933a,b, 1936a,b, 1938). The 
aim of the sample size calculation is to find the minimum sample size for a 
fixed probability of Type I error to achieve a value of the probability of a Type II 
error. The two errors are commonly referred to as the regulator’s (Type I) 
and investigator’s (Type II) risks, and by convention are fixed at rates of 0.05 
(Type I) and 0.10 or 0.20 (Type II). The Type I and Type II risks carry different 
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weights as they reflect the impact of the errors. With a Type I error medical 
practice may switch to the investigative therapy with resultant costs, whilst 
with a Type II error medical practice would remain unaltered.

In general, we usually think not in terms of the Type II error but in terms 
of the power of a trial (1 − probability of a Type II error), which is the prob-
ability of rejecting H0 when it is in fact false. Key trials should be designed 
to have adequate power for statistical assessment of the primary parameters. 
The Type I error rate that is usually taken as standard for a superiority trial is 
5%. It is recommended that the power to consider as standard to be 90%, with 
the minimum to be considered to be 80%. However, it is debatable regarding 
which level of power we should use, although it should be noted that, com-
pared to a study with 90% power, with just 80% power we are doubling Type 
II error for only a 25% saving in sample size.

Neyman and Pearson introduced the concept of the two types of error, 
Types I and II, in the 1930s. The labelling of these two types of error was arbi-
trary though as the authors simply listed the two types of error that could 
be made as sub-bullets that were numbered with the prefixes of I and II. 
Subsequently the authors then referred to the errors as errors of Type I and 
errors of Type II. If these sub-bullets had different labelling, of A and B say, 
then statisticians would have a different nomenclature.

The purpose of the sample size calculation is hence to provide sufficient 
power to reject H0 when in fact some alternative hypothesis is true. For the 
calculation we must have a prespecified value, for difference in the means, 
for the alternative hypothesis d (Campbell, Julious and Altman, 1995). The 
amount d is chosen as a clinically important difference or effect size and 
is the main factor in determining a sample size. Reducing the effect size 
by half will quadruple the required sample size (Fayers and Machin, 1995). 
Usually the effect size is taken from clinical judgement or is based on previ-
ous empirical experience in the population to be examined in the current 
trial. This is discussed in greater detail in Chapter 2.

Formally the aim is to calculate a sample size suitable for making infer-
ences about a certain function of given model parameter , f( ) say. For data 
that take a Normal form f( ) will be A  B, that is, the difference in means 
of two populations A and B. Now let S be a sample estimate of f( ). Thus S 
is defined as the difference in the sample means. As we are assuming that 
the data from the clinical trial are sampled from a Normal population, then, 
using standard notation, S~N( f( ), Var(S)), giving

 

S f

Var S
N

( )

( )
~ ( , ).0 1

A basic equation can now be developed in general terms from which a 
sample size can be estimated. Let   be the overall Type I error level, with /2 
of this Type I error equally assigned to each tail of the two-tailed test and let 

Z1 2/
 denote the (1  /2) 100% of a standard Normal distribution.
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Thus, an upper two-tailed, -level critical region for a test of f( )  0 is

 
|| ( ),/S Var SZ1 2

where||means take the absolute value of S ignoring the sign. For this critical 
region against an alternative that f( )  d, for some chosen d, to have power 
(1 − )% we require

 
d Z Var S Var S1 1 2( ) ( ) ,/Z

 
(1.1)

where  is the overall Type II error level, and Z1  is the 100(1 − )% point of 
the standard Normal distribution. Thus, in general terms for a two-tailed, 

-level test we require

 

Var ( )
(Z Z

S
d2

1 1 2
2

/ )
,

 
(1.2)

where Var(S) will be unknown and depends on the sample size. Once Var(S) 
is written in terms of sample size, these expressions can be solved to give the 
sample size.

Chapters 3 and 4 for parallel group and cross-over trials, respectively, detail 
the calculations for trials in which the data are expected to take a Normal 
form, while Chapter 9 (for parallel group) and Chapter 10 (for cross-over) 
describe the calculations for binary data. The calculations for ordinal and 
survival data are given in Chapters 14 and 15, respectively.

1.5 Equivalence Trials

In certain cases the objective is not to demonstrate superiority but to demon-
strate that two treatments have no clinically meaningful difference, that is, 
they are equivalent. The null (H0) and alternative (H1) hypotheses may take 
the form

H0:  The two treatment differences are different with respect to the 
mean response ( A  B).

H1:  The two treatments have equal effect with respect to the mean 
response ( A  B).

Usually these hypotheses are written in terms of a clinical difference d 
and become

H0: A B A Bd dor .

H1: d dA B .
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The statistical tests of the null hypotheses are an example of an intersec-
tion-union test (IUT), in which the null hypothesis is expressed as a union 
and the alternative as an intersection. To conclude equivalence, we need to 
reject each component of the null hypothesis.

Note that in an IUT each component is tested at level  giving a composite 
test, which is also of level  (Berger and Hsu, 1996).

A common approach with equivalence trials is to test each component of 
the null hypothesis, called the two one-sided test (TOST) procedure. In prac-
tice, this is operationally the same as constructing a (1 − 2 )100% confidence 
interval for f( ) where equivalence is concluded provided that each end of 
the confidence interval falls completely within the interval ( d, d) (Jones  
et al., 1996). Here, ( d, d) represents the range within which equivalence will 
be accepted.

Note as each test is carried out at the  level of significance then, under 
the two null hypotheses, the overall chance of committing a Type I error 
is less than  (Senn, 1997, 2001b). Hence, the TOST and (1 − 2 )100% confi-
dence interval approaches are conservative. There are enhancements that 
can be applied, but they are of no practical importance for formally powered 
clinical trials (Senn, 1997, 2001b). As a consequence the TOST approach is 
only discussed for equivalence trials (and bioequivalence trials in a separate 
discussion).

Figure 1.4 shows how confidence intervals are used to test the different 
hypotheses in superiority, non-inferiority and equivalence trials. The special 
case of bioequivalence is covered elsewhere in the chapter.

Here,  represents the standardised equivalence and non-inferiority lim-
its (   d/ ), and the solid line shows the confidence interval for the treat-
ment difference.

In ICH E10 (2000) some detail in the description of equivalence trials and 
the related non-inferiority trials (discussed elsewhere in the chapter) is pro-
vided, whilst ICH E9 (1998) and ICH E3 (1996) discuss the appropriate analysis 
of such trials.

Superior

Equivalent

Non-inferior

FIGURE 1.4 The difference among equivalence, non-inferiority and superiority.
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In this section the sample size formulae are initially derived:

 i. For the general case of inequality between treatments (i.e., f( )  )

 ii. Adopting the same notation and assumptions as superiority trials

 iii. Under the assumption that the equivalence bounds −d and d are 
symmetric about zero

This section then moves on to the special case of no treatment difference, 
replacing (i) with

 i. For the special case of no mean difference (i.e. f( )  0).

1.5.1 General Case

As with superiority trials we require

 

S f

Var S
N

( )

( )
~ ( , ).0 1

Hence, the (1 2 ) 100% confidence limits for a non-zero mean difference 
would be

 
S Z Var S1 .

To declare equivalence the lower and upper confidence limits should be 
within d

 
S Z Var S d S Z Var S d1 1( ) ( ) .and

 
(1.3)

Thus, for the TOST with this critical region there are two opportunities 
under the alternative hypothesis to have a Type II error for some chosen d 
and power (1 − ):

  
d Z Var S Z Var d Z Var1 1 11 2

( ) ( ) andS (( ) ( )S SZ Var1

  (1.4)

where 1 and 2 are the probability of a Type II error associated with each 
one-sided test from the TOST procedure, and   1  2. Hence, we require

 

Z
d

Var S
Z Z

d

Var S
Z1 1 1 11 2( ) ( )

and ..

 

(1.5)

Alternatively, Senn (1997) considered the calculation of the Type II error 
in terms of the power and hence had a slightly different nomenclature. 
However, they are equivalent.
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1.5.2 Special Case of No Treatment Difference

With symmetric equivalence bounds we require

 
S Z Var S1 ,

Thus, to declare equivalence we should have

 
S Z Var S d S Z Var S d1 1( ) ( ) .and

With the TOST procedure the Type II error for some chosen d and power 
(1 − ) will come from

 
d Z Var S Z Var S Z Var Z1 1 1( ) ( ) and (S)d 11 Var S( ).

Hence,

 

Z
d

Var S
Z1 2 1/

( )
,

giving

 

Var S
d

Z Z
( )

( )
.

/

2

1 1 2
2

 

(1.6)

Chapter 5 describes the calculations for which the data are expected to take 
a Normal form. The more complex calculations for binary data are discussed 
in Chapter 12. The calculations for ordinal and survival data are given in 
Chapters 14 and 15, respectively.

1.6 Non-inferiority Trials

In certain cases the objective of a trial is not to demonstrate that two treat-
ments are different or that they are equivalent but rather to demonstrate 
that a given treatment is not clinically inferior compared to another, that is, 
that a treatment is non-inferior to another. The null (H0) and alternative (H1) 
hypotheses may take the form

H0: A given treatment is inferior with respect to the mean response.

H1:  The given treatment is non-inferior with respect to the mean 
response.
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As with equivalence trials these hypotheses are written in terms of a clini-
cal difference d, which again equates to the largest difference that is clini-
cally acceptable (Committee for Proprietary Medicinal Products [CPMP], 
2000; Committee for Medicinal Products for Human Use [CHMP], 2005):

H0: A  B   d.

H1: A  B   d.

Detail is given in ICH E3 (1996) and ICH E9 (1998) on the analysis of non-
inferiority trials, whilst ICH E10 (2000) goes into detail regarding the defini-
tion of d.

To conclude non-inferiority, we need to reject the null hypothesis. In terms 
of the equivalence hypotheses mentioned this is the same as testing just 
one of the two components of the TOST procedure and reduces to a simple 
one-sided hypothesis test. In practice, this is operationally the same as con-
structing a (1 − 2 )100% confidence interval and concluding non-inferiority 
provided that the lower end of this confidence interval is above −d. Figure 1.4 
shows how confidence intervals are used to test the different hypotheses in 
superiority, equivalence and non-inferiority trials.

Adopting the same notation and under the same assumptions as for supe-
riority trials but with f( )   and the additional assumption that the non-
inferiority bound is −d, the lower (1  2 )100% confidence limit is

 
S Z Var S1 .

 
(1.7)

To declare non-inferiority the lower end of the confidence interval should 
lie above −d:

 
S Z Var S d1 ( ) .

 
(1.8)

For this critical region we therefore require a (1  )100% chance that the 
lower limit lies above −d. Hence,
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giving
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1 1
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(1.10)

Depending on the type of data Chapters 6 (for Normal), 11 (for binary), 14 (for 
ordinal) and 15 (for survival) describe the calculations.
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1.7 As-Good-as-or-Better Trials

For certain clinical trials the objective is to demonstrate either that a given 
treatment is not clinically inferior or that it is clinically superior when com-
pared to the control, that is, that the treatment is “as good as or better” than 
the control. Therefore two null and alternative hypotheses are investigated 
in such trials. First the non-inferiority null and alternative hypotheses

H0:  A given treatment is inferior with respect to the mean response 
( A  B).

H1:  The given treatment is non-inferior with respect to the mean 
response ( A  B).

If this null hypothesis is rejected, then a second null hypothesis is investigated:

H0:  The two treatments have equal effect with respect to the mean 
response ( A  B).

H1:  The two treatments are different with respect to the mean 
response ( A  B).

Practically these two null hypotheses are investigated through the construc-
tion of a 95% confidence interval to investigate where the lower (or upper, as 
appropriate) bound lies. Figure 1.4 highlights how the two separate hypoth-
eses for superiority and non-inferiority are investigated.

The as-good-as-or-better trials are really a subcategory of either superior-
ity or non-inferiority trials. However, in this book this class of trials is put in 
a separate section to highlight how these trials combine the null hypotheses 
of superiority and non-inferiority trials into one closed testing procedure 
whilst maintaining the overall Type I error (Morikawa and Yoshida, 1995; 
Bauer and Kieser, 1996; Julious, 2004d).

To introduce the closed testing procedure this section first describes the sit-
uation in which a one-sided test of non-inferiority is followed by a one-sided 
test of superiority. The more general case in which a one-sided test of non-
inferiority is followed by a two-sided test of superiority is then described.

In describing as-good-as-or-better trials this book draws heavily on the 
work of Morikawa and Yoshida (1995). The CPMP (2000) recently issued a 
points to consider document.

1.7.1 A Test of Non-inferiority and One-Sided Test of Superiority

The null (H10) and alternative (H11) hypotheses for a non-inferiority trial can 
be written as

H10: A  B d.

H11: A  B d.
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which alternatively can be written as

H10: A  B 0.

H11: A  B 0.

The corresponding null (H20) and alternative (H21) hypotheses for a superi-
ority trial can be written as

H20: A  B 0.

H21: A  B 0.

What is clear from the definitions of these hypotheses is that if H20 is 
rejected at the  level, then H10 would also be rejected. Also, if H10 is not 
rejected at the  level, then H20 would also not be rejected. This is because 

A  B d  A  B. Hence, both H10 and H20 are rejected if they are both 
statistically significant; neither H10 nor H20 is rejected if H10 is not significant; 
only H10 is rejected if only H10 is significant.

Based on these properties a closed test procedure can be applied to inves-
tigate both non-inferiority and superiority whilst maintaining the overall 
Type I error rate without  adjustment. To do this the intersection hypothesis 
H2 H10 0 is first investigated; if rejected, this is followed by a test of H10 and 
H20. In this instance H2 H1 H10 0 0, so both non-inferiority and superiority 
can be investigated through the following two steps (Morikawa and Yoshida, 
1995): First investigate the non-inferiority through the hypothesis H10. If H10 
is rejected, then H20 can be tested. If H10 is not rejected, then the investiga-
tive treatment is inferior to the control treatment. If H20 is rejected in the next 
step, then we can conclude that the investigative treatment is superior to the 
control. Else if H20 is not rejected, then non-inferiority should be concluded.

1.7.2 A Test of Non-inferiority and Two-Sided Test of Superiority

The null (H30) and alternative (H31) hypotheses for a two-sided test of supe-
riority can be written as:

H30: A  B.

H31: A  B or A  B.

These are equivalent to TOSTs at the /2 level of significance—summing to 
give an overall Type I error of —with the investigation of H20 against the 
alternative of H21 and the following hypotheses:

H40: A  B.

H41: A  B.

In applying the closed test procedure in this instance it is apparent that the 
intersection hypothesis H1 H30 0 is always rejected as it is empty, so both 
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H10 and H30 can be tested. Because there is no intersection the following 
steps can be applied (Morikawa and Yoshida, 1995):

 1. If the observed treatment difference is greater than zero and H30 
is rejected, then H10 is also rejected, and we can conclude that the 
investigative treatment is superior to control.

 2. If the observed treatment difference is less than zero and H30 is 
rejected and H10 is not, then the control is statistically superior to 
the investigative treatment. If H10 is also rejected, then the investi-
gative drug is worse than the control but is not inferior (practically 
although this may be difficult to claim).

 3. If H30 is not rejected but H10 is, then the investigative drug is non-
inferior compared to the control.

 4. If neither H10 nor H30 is rejected, then we must conclude that the 
investigative treatment is inferior to the control.

Note that when investigating the H10 and H30 hypotheses using the pro-
cedure described, H30 will be tested at a two-sided  level of significance 
whilst H10 will be tested at a one-sided /2 level of significance. Thus, the 
overall level of significance is maintained at .

1.8 Assessment of Bioequivalence

In this chapter, trials were described in which we wished to demonstrate 
that the two therapies were clinically equivalent. In equivalence trials the 
comparators may be completely different in terms of route of adminis-
tration or even actual drug therapies, but what we wish to determine is 
whether they are clinically the same. However, in bioequivalence trials 
the comparators are ostensibly the same; we may have simply moved man-
ufacturing sites or had a formulation changed for marketing purposes. 
Bioequivalence studies are therefore conducted to show these two formu-
lations of the drug have similar bioavailability—the amount of drug in the 
bloodstream. The assumption in bioequivalence trials is that if the two 
formulations have equivalent bioavailability, then we can infer that they 
have equivalent therapeutic effect for both efficacy and safety. The phar-
macokinetic bioavailability is therefore a surrogate for the clinical end-
points. As such we would expect the concentration-time profiles for the 
test and reference formulations to be superimposable (see Figure 1.5 for an 
example) and the two formulations to be clinically equivalent for safety 
and efficacy.
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In bioequivalence studies, therefore, we can determine whether in 
vivo the two formulations are bioequivalent by assessing whether the 
concentration-time profiles for the test and reference formulations are super-
imposable (Senn, 1998). Assessing if the rate and extent of absorption are the 
same usually does this. The pharmacokinetic parameter AUC (area under 
the concentration curve) is used to assess the extent of absorption, and the 
parameter Cmax (maximum concentration) is used to assess the rate of absorp-
tion. Figure 1.5 gives a pictorial representation of these parameters. If the two 
formulations are bioequivalent, then they can be switched without reference 
to further clinical investigation and can be considered interchangeable.

The null and alternative hypotheses are similar to those for equiva-
lence studies:

H0:  The test and reference formulations give different drug expo-
sures ( T  R).

H1:  The test and reference formulations give equivalent drug expo-
sure ( T  R).

Similar to other types of trials the objective of a bioequivalence study is 
to test the null hypothesis to see if the alternative is true. The ‘standard’ 
bioequivalence criteria demonstrate that average drug exposure on the test 
is within 20% of the reference on the log scale (FDA, 2000, 2001; CPMP, 1998). 
Thus, the null and alternative hypotheses can be rewritten as

H0: T/ R  0.80 or T/ R  1.25.

H1: 0.80  T/ R  1.25.
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FIGURE 1.5 An example of pharmacokinetic profiles for test and reference formulations.
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We can declare two comparator formulations to be bioequivalent if we can 
demonstrate that the mean ratio is wholly contained within 0.80 to 1.25. To 
test the null hypothesis we undertake TOSTs at the 5% level to determine 
whether T/ R  0.80 or T/ R  1.25. If neither of these tests hold, then we can 
accept the alternative hypothesis of 0.80  T/ R  1.25. As we are perform-
ing two simultaneous tests on the null hypothesis, both of which must be 
rejected to accept the alternative hypothesis, the Type I error is maintained 
at 5%. Similar to equivalence trials discussed in this chapter the convention 
is to represent the TOSTs as a 90% confidence interval around the mean ratio 
of T/ R, which summarises the results of two one-tailed tests.

In summary, a test formulation of a drug is said to be bioequivalent to its 
reference formulation if the 90% confidence interval for the ratio test:reference 
is wholly contained within the range 0.80 to 1.25 for both AUC and Cmax. As 
both AUC and Cmax must be equivalent to declare bioequivalence there is no 
need to allow for multiple comparisons.

Note that this example raises the issue of loss of power when we have 
multiple endpoints. Here both AUC and Cmax needed to hold to declare 
bioequivalence, so the Type I error is not inflated. However, such “and” com-
parisons may affect the Type II error, depending on the correlation between 
the endpoints, as there is twice the chance to make a Type II error, which 
can have an impact on the power (Koch and Gansky, 1996; CPMP, 2002). The 
most extreme situation would be for two independent “and” comparisons in 
which the Type II error is doubled. However, here AUC and Cmax are highly 
correlated, and as we select the highest variance from the two to calculate the 
sample size this means that any increase in the Type II error could be offset 
by the fact that for either AUC or Cmax the power is greater than 90% for the 
calculated sample size.

For compounds with certain indications other parameters, such as Cmin 
(defined as the minimum concentration over a given period) or Tmic (defined 
as time above a minimum inhibitory concentration over a given period), may 
also need to be assessed.

Note that the criteria for acceptance of bioequivalence may vary depend-
ing on factors such as which regulatory authority’s guidelines are followed 
and the therapeutic window of the compound formulated, so the ‘standard’ 
criteria may not always be appropriate.

The methodology described in this section can also be applied to other 
types of in vivo assessment such as the assessment of a food (FDA, 1997), 
drug interaction (CPMP, 1997; FDA, 1999b) or special populations (FDA, 1998, 
1999a). The criteria for acceptance for other types of in vivo assessment may 
vary depending on the guidelines (FDA 1999a) or a priori clinical assessment 
(CPMP, 1997; FDA, 1997, 1999b).

It may be worth noting the statistical difference between testing for 
equivalence and bioequivalence with reference to investigating the null 
hypothesis. In equivalence trials the convention is to undertake TOSTs at 
the 2.5% level, which in turn are represented by a 95% confidence interval; 
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in a bioequivalence trial TOSTs at the 5% level are undertaken that are 
represented by a 90% confidence interval. Thus, in bioequivalence trials 
the overall Type I error is 5%—twice that of equivalence trials, in which 
the overall Type I error is 2.5%. Chapter 6 details the actual sample size 
calculations.

1.8.1 Justification for Log Transformation

The concentration-time profile for a one-compartment intravenous dose can 
be represented by the following equation:

 
c t Ae t( ) ,

where t is time, A is the concentration at t  0 and  is the elimination rate 
constant (Julious and Debarnot, 2000). It is evident from this equation that drug 
concentration in the body falls exponentially at a constant rate . A test and 
reference formulation are superimposable, therefore, only when cL (t)  cR (t). 
On the log scale this is equivalent to log( ) log( )A AT T R R, which for T  R 
(which a priori we would expect) becomes log( ) log( )A AT R . Thus, on the log 
scale the difference between two curves can be summarised on an additive 
scale. It is on this scale that such pharmacokinetic parameters as the rate 
constant  and the half-life are derived (Julious and Debarnot, 2000). This 
simple rationale also follows through for statistics used to measure exposure 
(AUC) and absorption (Cmax) as well as the pharmacokinetic variance esti-
mates (Lacey et al., 1997; Julious and Debarnot, 2000). Hence, unless there is 
evidence to indicate otherwise, the data are assumed to follow a log Normal 
distribution; hence the default is to analyse loge AUC and loge Cmax. The dif-
ferences on the loge scale (test-reference) are then back-transformed to obtain 
a ratio. It is the back-transformed ratio and its corresponding 90% confidence 
interval that are used to assess bioequivalence.

1.8.2 Rationale for Using Coefficients of Variation

All statistical inference for bioequivalence trials is undertaken on the log 
scale and back-transformed to the original scale for interpretation. Thus, the 
within-subject estimate of variability on the log scale is used for both infer-
ence and sample size estimation. With the interpretation of the mean effect 
on the original scale it is good also to have a measure of variability also 
on the original scale. This measure of variability is usually the coefficient 
of variability (CV) as for log-Normally distributed data the following exact 
relationship between the CV on the arithmetic scale and the standard devia-
tion  on the log scale holds (Diletti, Hauschke and Steimijans, 1991; Julious 
and Debarnot, 2000):

 
CV e( )2 1 .
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For small estimates of 2 (   0.30) the CV can be approximated by

 CV .

1.8.3 Individual and Population Bioequivalence

The assessment of bioequivalence as defined in this chapter is based on 
average bioequivalence in which only the formulation means are required to 
be equivalent. Paradigms for bioequivalence based on population and indi-
vidual bioequivalence have also been proposed (Schall and Williams, 1996; 
Hauck and Anderson, 1992) for which there are regulatory guidelines (FDA, 
2001). These alternative approaches also involve formulation variabilities as 
well as their means in the assessment bioequivalence. To calculate a sample 
size recommendations have been made based on simulations (FDA, 2001).

The merits of the concepts of individual and population bioequivalence 
are debatable, and some authors have questioned the concepts (Senn, 2001b). 
There are a number of reasons for this. The first is that for two formulations 
A and B in a study it could be possible to declare A to have individual or 
population bioequivalence with B while the converse is not true.

The second reason is that there is no hierarchy to the assessments. If in a 
study individual bioequivalence was declared between two formulations it 
is not then possible to automatically be able to conclude population bioequiv-
alence and average bioequivalence. In fact it is possible to be able to conclude 
individual bioequivalence and yet have a point estimate outside the stan-
dard average bioequivalence bounds of (0.80, 1.25).

The final reason is turning the arguments for individual and population 
bioequivalence assessment around. The justification for their use is that 
they allow for an assessment of switchability and prescribability of two for-
mulations that have greater clinical meaning. This may apply if the study 
conducted is in a patient population with clinical endpoints. However, 
bioequivalence studies are conducted in healthy volunteers using surrogate 
endpoints (pharmacokinetics), so the argument pertaining to “switchability” 
and “prescribability” fails.

1.9 Estimation to a Given Precision

In the previous sections of the chapter calculations were discussed with ref-
erence to some clinical objectives, such as the demonstration of equivalence. 
However, often a preliminary or pilot investigation is conducted in which the 
objective is to provide evidence of what the potential range of values is with 
a view to doing a later definitive study (Wood and Lambert, 1999; Day, 1988; 
Julious and Patterson, 2004; Julious, 2004d). Such studies may also have sample 
sizes based more on feasibility than formal consideration (Julious, 2005b).
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In a given drug’s development, it may be the case that reasonably reliable 
estimates of between-subject and within-subject variation for the endpoint 
of interest in the reference population are available, but the desired mag-
nitude in the treatment difference of interest will be unknown. This may 
be the case, for example, when considering the impact of an experimental 
treatment on biomarkers (Biomarkers Definitions Working Group, 2001) or 
other measures not known to be directly indicative of clinical outcome but 
potentially indicative of pharmacological mechanism of action. In this situa-
tion, drug and biomarker development will be in such an early stage that no 
prespecified treatment difference is known. In such exploratory or ‘learning’ 
studies (Sheiner, 1997), what is proposed in this book is that the sample size 
be selected to provide a given level of precision in the study findings, not to 
power in the traditional fashion for a (in truth unknown) desirable and pre-
specified difference of interest.

For such studies, rather than testing a hypothesis, it is more informative to 
give an interval estimate or confidence interval for the unknown f ( ).

Recall that (1  ) 100% confidence interval for f ( ) has half-width

 
w Z Var S/ ( ).2  

(1.11)

Hence, if you are able to specify a requirement for w and write Var(S) in 
terms of n, then the expression can be solved for n. It should be noted though 
that if the sample size is based on precision calculations, then the protocol 
should clearly state this as the basis for the size of the study.

A similar situation occurs when the sample size is determined primarily 
by practical considerations. In this case you may quote the precision of the 
estimates obtained based on the half-width of the confidence interval and 
provide this information in the discussion of the sample size. Again it must 
be clearly stated in the protocol that the size of the study was determined 
based on practical, and not formal, considerations.

The estimation approach also could be useful if you wish to quantify a pos-
sible effect across several doses or not only to power on a primary endpoint 
overall but also to have sufficient precision in given subgroup comparisons. 
The former of these may be a neglected consideration for clinical trials even 
though there is some regulatory encouragement as the CPMP (2002) Points 
to Consider on Multiplicity Issues in Clinical Trials stated:

Sometimes a study is not powered sufficiently for the aim to identify a 

single effective and safe dose but is successful only at demonstrating an 

overall positive correlation of the clinical effect with increasing dose. 

This is already a valuable achievement. Estimates and confidence inter-

vals are then used in an exploratory manner for the planning of future 

studies.

Indeed in an early phase or pilot trial instead of powering a single dose 
against a placebo we could undertake a well-designed study based on the 
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precision approach with several doses estimated against the placebo. As the 
CPMP document acknowledged this could be a very informative trial.

Sample size calculations for precision-based trials are discussed in Chapters 
8, 13, 14 and 15 for Normal, binary, ordinal and survival data, respectively.

Key Messages

When undertaking a clinical trial we are looking to make infer-
ence about true population responses.
When making this inference we can make false-positive (Type 
I) or false-negative (Type II) errors.
The setting and definition of these errors depend on the objec-
tive of the individual trial.
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2
Seven Key Steps to Cook Up a Sample Size

2.1 Introduction

In many ways the actual calculation of a sample size is the final step in an 
iterative calculation process. This chapter describes some of these steps, from 
defining the trial objective to selection of an appropriate endpoint. There is 
also a description of how each interacts to have an impact on the sample size.

2.2 Step 1: Deciding on the Trial Objective

The first decision is to decide on the primary objective for the trial (as 
described in Chapter 1). This then has an impact on the definition of the sta-
tistical null and alternative hypotheses. Chapter 1 described the main trial 
objectives that could be assessed:

Superiority

Non-inferiority

Equivalence

Bioequivalence

Precision

Even within an individual trial there may be an assessment of a number of 
objectives (e.g. in an as-good-as-or-better trial where there is an assessment 
of both non-inferiority and superiority within one hierarchical approach).

With several treatment arms there may also be an assessment of differ-
ent objectives depending on the investigative arm comparison. For example 
with a three-arm trial with a new investigative treatment compared to both 
placebo and an active control, the investigative treatment may be compared 
to placebo to assess superiority or against the active control to make a non-
inferiority assessment. Here a decision should be made regarding the pri-
mary objective of the trial. The sample size for the study will be based on this 
primary objective.
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2.3 Step 2: Deciding on the Endpoint

The next step is deciding on the endpoint to be assessed in the trial. The 
primary endpoint should enable an assessment of the primary objective of 
the trial. It is beyond the scope of this book to go into the detail on endpoint 
selection as this depends on many things, such as the objective of the trial.

With respect to the actual mechanics of a sample size calculation the calcu-
lation would depend on the form of the endpoint and whether it is

Normal

Binary

Ordinal

Survival (time to event)

The sample size calculations for different endpoints for different objectives 
are described in subsequent chapters.

2.4 Step 3: Determining the Effect Size (or Margin)

Steps 1 and 2 can be relatively easy steps to climb. What may be difficult could 
be deciding on what effect size (or margin) to base the sample size since the 
purpose of the sample size calculation is to provide sufficient power to reject 
the null hypothesis when in fact some alternative hypothesis is true.

In terms of a superiority trial we might have a null hypothesis that the two 
means are equal versus an alternative that they differ by an amount d. The 
amount d is chosen as a clinically important difference or effect size and is 
the main factor in determining a sample size. Reducing the effect size by half 
will quadruple the required sample size (Fayers and Machin, 1995).

To some degree the determination of what is an appropriate effect size (or 
margin) does have a qualitative component. However, if possible it is best to 
base the calculation on some form of quantitative assessment, especially if 
the endpoint chosen is established already in the investigated population.

2.4.1 Obtaining an Estimate of the Treatment Effects

If we have several clinical investigations, then we need to obtain an overall 
estimate of the treatment effect. To do this we could follow meta-analysis 
methodologies (Whitehead and Whitehead, 1991). To obtain an overall esti-
mate across several studies we could use
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where ds is an estimate of the overall response across all the studies, di is 
an estimate of the response from study i, wi is the reciprocal of the variance 
from study i (w di i1/var( )) and k is the number of studies. Hence, define

 
d N d wi s i~ , ,1

 
(2.2)

and thus
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Hence overall we can define
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where  is the population variance and  is the population mean. The vari-
ance for ds is defined as s ws i

k
i1 1/ ; consequently a 95% confidence interval 

for the overall estimate can be obtained from
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Note that the methodology applied here is that of fixed-effects meta-analy-
sis. Random trial-to-trial variability in the “true” control group rate has not 
been investigated. The approaches described in this section can allow us to 
undertake this investigation.

We could apply a random effects approach by replacing wi with wi
* where 

wi
*  comes from (Whitehead and Whitehead, 1991)
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where  is defined as
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Simply,  can crudely be thought of as

 

2
Variation in the treatment difference bettween groups

Variation in the variation betwween groups
.  (2.8)

If 2  0 then the weighting for the fixed-effect analysis is used.
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The corresponding (random effects) confidence interval would be given by
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The relative merits of fixed- versus random-effects meta-analysis is not dis-
cussed here. In this chapter the methodology applied is that of fixed-effects 
meta-analysis.

One thing to highlight is that it is not so much random-effects analysis but 
random effects planning that is of importance. The fundamental assump-
tion when considering retrospective data in planning a trial is that the true 
response rates are the same from trial to trial and observed rate responses 
only vary according to sampling error. What this touches on, in fact, is the 
heterogeneity of trials, especially trials conducted sequentially over time or 
in different regions for instance. This is discussed in greater detail in an 
example in Section 2.5.2.

2.4.1.1 Worked Example with a Binary Endpoint

Suppose we are planning a study in a rheumatoid arthritis population in 
which the binary responder endpoint ACR20 is taken as the primary end-
point. For now it does not matter what ACR20 is per se, but it is a scale from 
the American College of Rheumatology (ACR) on which a responder is defined 
as someone who improves by 20%. The primary endpoint therefore is the 
proportion of people who have this response. Figure 2.1 gives a graphical 
summary for the absolute difference in response (active versus placebo). The 
bottom two lines (fixed and random) give estimates of the overall responses 
using fixed- and random-effects meta-analyses. Fixed meta-analysis was 
taken to give the overall estimates for this worked example.

These results could be used to consider an effect size for the study cur-
rently planned. From this analysis the overall response rate on placebo was 
32%, while that for active was 50%; these were estimated from separate meta-
analyses not presented here. The overall estimate of the difference (given in 
Figure 2.1) between active and placebo is 18% while the minimum observed 
difference was 12%.

Such analyses could form the basis for discussions with a study team 
regarding which treatment effect to use in the planned study.

2.4.1.2 Worked Example with Normal Endpoint

In the same program as the one described for rheumatoid arthritis suppose 
we are planning a second study in an osteoarthritis population. An endpoint 
to be used in the planned trial is Western Ontario and McMaster University 
Osteoarthritis Index (WOMAC) physical function which is measured on a 
visual analogue scale (VAS).
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An issue that became apparent was that different studies used different 
VASs. This can be resolved by instead using the mean difference x xA B via 
the scale-independent standardised estimate of effect ( )x x sA B /  and doing a 
meta-analysis with these standardised differences (Whitehead and Whitehead, 
1991). Figure 2.2 gives a graphical summary of the meta-analysis.

Etoricoxib I

Etorixoxib II
Celecoxib I

Celecoxib II
Rofecoxib I

Rofecoxib II
Valdecoxib I
Valdecoxib II

Fixed

Random

0.0

Probability Difference

–0.1–0.2–0.3–0.4 0.1 0.2 0.3 0.4

FIGURE 2.1 Meta-analysis of active against placebo in a rheumatoid arthritis population for 

absolute difference for ARC20.

Etoricoxib Knee (6w)
Etoricoxib Knee or Hip (12w)

Celecoxib Hip (12w)
Celecoxib Knee (12w)

Rofecoxib Knee or Hip (6w)

Valdecoxib Hip (12w)
Valdecoxib Knee (12w)

Fixed

Random

0.0

Standardised Mean Difference

–0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIGURE 2.2 Meta-analysis for WOMAC physical function for a standardised mean difference 

in an osteoarthritis population.
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With a standard meta-analysis this can be an issue as ( )x x sA B /  could be 
considered harder to interpret than x xA B. However, in terms of interpretation 
the use of standardised effects is more straightforward (discussed in Chapter 
3). These are used in sample size calculations and in construction of tables.

For this analysis the overall standardised effect was 0.46, which with stan-
dard deviation assumed to be 22 mm would equate to a difference of 10 mm since 
0.46  10/22 (actually 0.46  10.12/22 as there is a small rounding error). In addition 
the minimum effect observed was 0.22 (equating to a difference of 4.5 mm).

2.4.2 Point Estimate

We have discussed thus far the challenges in quantifying an effect size 
through empirical use of data particularly across several studies. Suppose, 
however, we only have a single trial on which to base an effect size.

To consider this problem we first need to consider the following situation: 
we have designed a study with the standard deviation assumed to be s about 
an effect size d. We calculate a sample size n with 90% power and two-sided 
significance level of 5%.

The trial is run, and you see exactly the same effect d and the same stan-
dard deviation s as you designed. So what is your two-sided P-value? It is 
not 5% but actually P  0.002, much less than the significance level designed 
around. This is because of the distribution under the alternative hypothesis.

Suppose the alternative hypothesis is true; the response would be distrib-
uted centrally about d as highlighted in Figure 2.3. If the alternative hypoth-
esis is correct, there is only a 50% chance to see an effect greater than d, and 
there is even a chance of seeing zero or an effect where P  0.05, which is why 
we have Type II errors (the chance of declaring no difference when a differ-
ence actually exists).

In fact to have a statistically significant result of P  0.05, if the data are dis-
tributed around a true effect d on which the study is powered then we would 
only need to see an effect that is 0.65 of d.

The consequence of what we have discussed is that care needs to be exer-
cised if an observed effect from a single study is to be used as the effect size 
to design a future study. To be confident of having the desired power the 
observed P-value would need to be nearer 0.002 than 0.05.

d0

FIGURE 2.3 Treatment response under the alternative hypothesis.
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2.4.3 Choice of Equivalence or Non-inferiority Limit

The choice of the Type I error in the setting of the non-inferiority/equivalence 
limit is a controversial issue. The limit is defined as the largest difference that 
is clinically acceptable such that a larger difference than this would matter in 
clinical practice (Committee for Proprietary Medicinal Products [CPMP], 2000). 
This difference also cannot be (International Conference on Harmonisation of 
Technical Requirements for Registration of Pharmaceuticals for Human Use 
[ICH] E10, 2000)

greater than the smallest effect size that the active (control) drug 

would be reliably expected to have compared with placebo in the setting 

of the planned trial.

However, beyond this there is not much formal guidance. Jones et al. (1996) 
recommended that the choice of limit be set at half the expected clinically mean-
ingful difference between the active control and placebo. There is no hard regu-
latory guidance, although the CPMP (1999) in a concept paper originally stated 
that for non-mortality studies it might be acceptable to have an equivalence 
limit “of one half or one third of the established superiority of the comparator to 
placebo, especially if the new agent has safety or compliance advantages”.

In the draft notes for guidance that followed the CHMP (2005) moved away 
from such firm guidance and stated the following

It is not appropriate to define the non-inferiority margin as a propor-

tion of the difference between active comparator and placebo. Such 

ideas were formulated with the aim of ensuring that the test product 

was superior to (a putative) placebo; however they may not achieve this 

purpose. If the reference product has a large advantage over placebo this 

does not mean that large differences are unimportant, it just means that 

the reference product is very efficacious.

The CHMP now talk of having a margin that ensures that there is “no 
important loss of efficacy” caused through switching from reference to test 
and that the margin could be defined from a “survey of practitioners on the 
range of differences that they consider to be unimportant”.

Generally, the definition of the acceptable level of equivalence or non- 
inferiority is made with reference to some retrospective superiority com-
parison to placebo (Hung et al., 2003; D’Agostino, Massaro and Sullivan, 
2003; Wiens, 2002). Methodologies for indirect comparisons to placebo have 
been discussed in detail by Hasselblad and Kong (2001). In this context the 
definition of the non-inferiority and equivalence limits should address the 
following (Wiens, 2002; D’Agostino, Massaro and Sullivan, 2003; Julious, 
2004d):

1. There must be confidence that the active control would have been 
different from placebo had one been employed.
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2. There should be a determination that there is no clinically mean-
ingful difference between investigative treatment and the control.

 3. Through comparing the investigative treatment to control there should 
be an ability indirectly to be able to determine that it is superior to 
placebo.

Points 1 and 3 are important as there is a view that non-inferiority and 
equivalence trials reward “failed” studies; that is, if we conducted a poor trial 
in which it would not have been possible to demonstrate the active control to 
be superior to placebo, then a poor investigative therapy may slip through via 
comparison to this control. However, Julious and Zariffa (2002) pointed out 
that this may not be the case as poor studies are poor for most objectives.

We can therefore infer that the clinical difference used for the limits of 
equivalence and non-inferiority will be smaller than the difference used for 
placebo-controlled superiority trials. There also is no generic definition for 
its setting; its definition will need to be defined on a study-by-study or indi-
cation-by-indication basis with consultation with the appropriate agencies 
and experts.

2.5 Step 4: Assessing the Population Variability

One of the most important components in sample size calculation is the vari-
ance estimate used. This variance estimate is usually made from retrospec-
tive data, sometimes from a number of studies. To adjudicate on the relative 
quality of the variance Julious (2004d) recommended considering the follow-
ing aspects of the trials from which the variance is obtained:

1. Design: Is the study design ostensibly similar to the one you are 
designing? On the basic level are the data from a randomised con-
trolled trial? Observational or other data may have greater vari-
ability. If you are undertaking a multicentre trial is the variance 
also estimated from a similarly designed trial? Were the endpoints 
similar to those you plan to use? Not just the actual endpoints, but 
were the times relative to treatment of both the outcome of interest 
and the baseline similar to your own?

2. Population: Is the study population similar to your own? The most 
obvious consideration is to ask whether the demographics were the 
same, but if the trial conducted was a multicentre one, was it con-
ducted in similar countries? Different countries may have different 
types of care (e.g. different concomitant medication) and so may have 
different trial populations. Was the same type of patient enrolled the 
same (same number of mild, moderate and severe cases)? Was the 
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study conducted during the same seasons (relevant for conditions 
such as asthma)?

3. Analysis: Was the same statistical analysis undertaken? This means 
not just the question of whether the same procedure was used for 
the analysis but whether the same covariates were fitted to the 
model. Were the same summary statistics used?

The accuracy of the variance will obviously influence the sensitivity of a 
trial to the assumptions made about the variance and will obviously influ-
ence the strategy of an individual clinical trial. Depending on the quality of 
the variance estimate (or even if we have a good variance estimate) it may 
be advisable, as discussed in this chapter, to have some form of variance re-
estimation during the trial.

We now highlight how the points raised need to be considered through 
two case studies. In each of these examples we make the assumption that 
the effect size of interest is known but what what must be ascertained is the 
control response rate (for binary data) or the population variability (for con-
tinuous Normal data).

2.5.1 Binary Data

For binary data the assumptions about the control response rate critically 
influence the sample size. This is because in determining an investigative 
treatment response rate it may be the control response pA and a fixed effect 
size d that may be used to conjecture regarding the investigative response 
(pB  pA  d). We highlight the issues through a worked example.

2.5.1.1 Worked Example of a Variable Control Response with Binary Data

Table 2.1 gives the data from eight different studies for the control response 
rate (Stampfer et al., 1982). The ei here are the number of events (myocardial 
infarctions) observed in each study. As you can see, the response rates vary 
between 8% and 27% across the different studies. The rightmost two col-
umns give the workings for calculations for wi and wi pi and hence the calcu-
lations for the overall estimates.

The response from each study and the overall response estimate are 
given in Figure 2.4. From this we can estimate the overall response from 
a fixed-effects meta-analysis (the fixed line in the figure) to be 14.3% with 
standard error 0.0086. Hence, the 95% confidence interval around the overall 
estimate is 0.126 to 0.160.

There may be some evidence of heterogeneity across the studies used 
in this example. This may be because certain trials were sampled from 
“different” populations. It could raise the question of whether an overall 
response should be used or whether to use only trials, for example, from 
the same geographic region. In Section 2.5.2 we discuss in greater detail 
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how regional and demographic differences may have an impact on calcula-
tion for Normal data.

2.5.2 Normal Data

Even if we have a good estimate of the variance, what guarantee is there that 
the trial population from which the population is taken will be the same as 
the one from which the prospective trial will be drawn? We could perform 
two apparently identical trials (same design, same objectives, same centres), 
but this would not be a guarantee that each trial would be drawn from the 

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8

Fixed

Control Prevalence

0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 2.4 Plot of point estimates and confidence intervals for individual studies and 

overall.

TABLE 2.1

Control Data by Individual Study
 

Control

Trial ei Total Pi wi piwi
 

1 15     84 0.179 572.66 102.26

2 94   357 0.263 1,840.44 484.60

3 17   207 0.082 2,746.05 225.52

4 18   157 0.115 1,546.72 177.33

5 29   104 0.279 517.18 144.21

6 23   253 0.091 3,061.30 278.30

7 44   293 0.150 2,295.89 344.78

8 30   159 0.189 1,038.68 195.98

Total 270 1,614 13,618.91 1,952.97
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same population. For example, if the trials were done at different times (e.g., 
years), then the concomitant medicines used in the trials may change over 
time, which could change the populations. Likewise with respect to time the 
technologies associated with the trials may change: from technologies asso-
ciated with study conduct to the technology used to actually assess subjects. 
Again we highlight the issues through a worked example.

2.5.2.1 Worked Example of Assessing Population 
Differences with Normal Data

In designing a clinical trial for depression, variability data were collated 
from a number of trials. The primary endpoint for the prospective trial was 
the Hamilton Depression Scale (HAMD) (Hamilton, 1960). An appropriate 
estimate of the variance was thus required to use in the design of the pro-
spective study.

The placebo data from 20 randomised controlled trials were collated for 
the primary endpoint of the HAMD 17-item scale. The data sets were based 
on the intent-to-treat data set as this would be the primary analysis popula-
tion in the future trial.

A summary of the top-level baseline demographic data for each trial is 
given in Table 2.2. The data span 18 years, from 1983 to 2001. The studies 
were conducted in the two regions of Europe and North America in a num-
ber of populations. The duration of the studies varied from 4 to 12 weeks.

As discussed in Chapter 3, to get an overall estimate of the variance across 
several studies we can use the following result:
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dfp
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i i
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2 1
2
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,

 
(2.10)

where k is the number of studies, si
2  is the variance estimate from study i 

(estimated with dfi  degrees of freedom) and sp
2 is the minimum variance 

unbiased estimate of the population variance. This result therefore weights 
the individual variances to get an overall estimate such that the larger stud-
ies have greater weight in the variance estimate than smaller studies.

Using (2.10) the pooled estimate of the variance is 55.03, which is estimated 
with 1,543 degrees of freedom. However, there does seem to be some het-
erogeneity in the sample variances in the different subpopulations, given in 
Table 2.3, with the variability overall in the paediatric population 46.09 (on 
85 degrees of freedom) and in the adult population 58.59 (on 312 degrees of 
freedom). Also, albeit on smaller populations in Europe, there seems to be 
a difference between the two regions of North America and Europe. These 
differences are not trivial, with differences in variances of 20% knocking on 
to a consequent 20% difference in the sample size estimate.

Note though that this investigation of the heterogeneity ignores factors 
like HAMD entry criteria at baseline and study duration, which may also 
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have an impact on the heterogeneity of the studies. There is no evidence of 
any trends by time.

We could do a statistical test to assess heterogeneity between the study 
variances through Bartlett’s test, which can be applied and compared to the 
chi-squared distribution (Bartlett, 1937; Armitage and Berry, 1987):

 
M C k/ ~ 1
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(2.11)
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Armitage and Berry (1987) recommended using C in the test statistic only in 
marginal cases as it is usually close to 1.

For an overall test of heterogeneity the Bartlett test returns a P-value of 
0.561 (excluding C in the calculation) and 0.519 (including C). Thus, although 
there seems to be some evidence of differences in the different demographic 
populations the Bartlett test statistic infers that the individual studies them-
selves are drawn from the same population (and thus the demographic dif-
ferences may be down to chance).

The variance data can also be examined pictorially. Data taken from a chi-
squared distribution can be approximated to a Normal distribution with 
mean 2 1df  and variance 1. This result only technically holds for large n 
(and there are some small sample sizes in the case study). However, most of 
the studies are reasonably large. Hence, by taking away 2 1dfi  from each 
study (and dividing by 1) we can convert each of the variances to a scale 
that approximates to the standard Normal. From these amended variances a 
Normal probability plot can be constructed.

TABLE 2.3

Baseline Demographics and Variances from 20 Randomised Controlled 

Trials’ Placebo Data
 

Overall Europe North America

Population sp
2 df sp

2 df sp
2 df

 
All 55.03 1,543 50.48 50 55.19 1,493

Adult 58.59 312 51.58 42 59.70    430

Adult/geriatric 55.66 1,041 44.71   8 55.74 1,033

Paediatric 46.09 85 . . 46.09      85

Geriatric 45.54 105 . . 45.54    105
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Figure 2.5 gives the Normal probability plot for the data. The bounds 
around the line are confidence bounds calculated using the methodologies 
of Friendly (1991). Thus, this figure pictorially supports the result from the 
Bartlett test.

This case study is good in that at first, with 20 studies, it seems that we 
have ample data on which to estimate a variance for a sample size calcu-
lation. However, by definition the reason why there were so many studies 
was to interrogate the treatment response in different populations. Once we 
drilled down into the data to optimise calculations for the prospective trial 
(same population; same study design and same region), there were less data 
to rely on.

When assessing the data at a global level, however, there seemed to be no 
heteroskedasticity between the studies. The evidence seems to suggest that 
the assumption that each study was drawn from the same population holds, 
and that a global, pooled estimate of the variance should be sufficient to 
power the prospective study.

2.6 Step 5: Type I Error

The results of any study are subject to the possibility of error; the purpose of 
the sample size calculation is to reduce the risk of errors due to chance to a 
level we will accept.

Figure 2.6 pictures the response anticipated under the null hypothesis with 
a superiority trial. Even if the null hypothesis is true there is still a chance 
that an extreme value would be observed such that it is rejected.
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FIGURE 2.5  Normal probability plot of the observed variances across the 20 studies in the 

heteroskedasticity case study.
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Type I error therefore is the chance of rejecting the null hypothesis when 
it is true. We can reduce the risk of making a Type I error by increasing the 
level of “statistical significance” we demand—the level at which a result is 
declared significant is also known as the Type I error rate. For example, in 
Figure 2.6 we could move the tails further and further away from 0 before 
we will accept a difference as statistically significant (i.e. reduce the signifi-
cance level).

To a degree, the setting of the Type I error level is determined by precedent 
and is dictated by the objective of the study. It is often termed society’s risk as 
medical practice may change depending on the results, so falsely significant 
results have a consequence.

2.6.1 Superiority Trials

For a superiority trial in which a two-sided significance test will be under-
taken the convention is to set the Type I error at 5%. For a one-sided test the 
convention is to set the significance level at half of this (i.e. 2.5%) (ICH E9, 
1998). However, these are conventions; although to a degree they could be 
considered the ‘norm’ there may be instances for superiority trials in which 
the Type I error rate is set higher depending on the therapeutic area and 
phase of development or lower.

An example for which the error rate may be set lower could be when instead 
of undertaking two clinical trials for a drug submission one is undertaken. 
Here the Type I error rate may be set at 0.125% as this is equivalent in terms 
of statistical evidence to two trials set at 5%.

2.6.2 Non-Inferiority and Equivalence Trials

The convention for non-inferiority and equivalence trials is to set the Type I 
error rate at half of that employed for a two-sided test used in a superiority 
trial (i.e. one-tailed significance level of   0.025). However, setting the Type I 
error rate for non-inferiority and equivalence trials at half that for superiority 
trials could be considered consistent with superiority trials. This is because 

0

Accept H0

Critical value where

H0 will be rejected
Critical value where

H0 will be rejected

Reject H0

Risk of making

a Type I

error

FIGURE 2.6 Illustration of a Type I error.
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although in a superiority trial we have a two-sided 5% significance level in 
practice for most trials in effect what we have is a one-sided investigation 
with a 2.5% level of significance. The reason for this is that you usually have 
an investigative therapy and a control therapy, and it is only statistical superi-
ority of the investigative therapy that is of interest.

Throughout the rest of the book when equivalence and non-inferiority tri-
als are discussed the assumption is that   0.025 and that 95% confidence 
intervals are used in the final statistical analysis.

Bioequivalence studies, described in Chapter 6, are different with respect 
to their Type I errors as two simultaneous tests at 5% and 90% confidence 
intervals are used.

2.7 Step 6: Type II Error

A Type II error is what you make when you do not reject a null hypothesis 
when it is false (and the alternative hypothesis is true). Figure 2.7 gives an 
illustration of the Type II error. From this you can see that under the alterna-
tive hypothesis there is a distribution of responses if the alternative is true 
centred around a difference d. From this figure you can see that under the 
alternative hypothesis there is still a chance a difference will be observed 
that will provide insufficient evidence to reject the null hypothesis.

The aim of the sample size calculation therefore is to find the minimum 
sample size for a fixed probability of Type I error to achieve a value of the 
probability of a Type II error. The Type II error is often termed the investiga-
tor’s risks and by convention is fixed at rates of 0.10 to 0.20. The Type I error 
(usually set at 5% as discussed) and Type II risks carry different weights as they 
reflect the impact of the errors. As stated, with a Type I error medical practice 

FIGURE 2.7 Illustration of a Type II error.
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may switch to the investigative therapy with resultant costs, whilst with a 
Type II error medical practice would remain unaltered.

In general, we usually think not in terms of the Type II error but in terms 
of the power of a trial (1 − probability of a Type II error), which is the prob-
ability of rejecting the H0 when it is in fact false. Pivotal trials should be 
designed to have adequate power for statistical assessment of the primary 
parameters. The Type I error rate of 5% is usually taken as standard for a 
superiority trial. He is recommended that the power to be consider to be  
standard be 90% with 80% the minimum considered. It is debatable regard-
ing which level of power we should use, although it should be noted that, 
compared to a study with 90% power, with just 80% power we are doubling 
Type II error for only a 25% saving in sample size.

2.8 Step 7: Other Factors

The sample size is actually the evaluable number of subjects required for anal-
ysis. The final step in the calculation is to ask what the required total sample 
size is to ensure the evaluable number of subjects for analysis. For example, 
although you may enrol and randomise a certain number of subjects you may 
then find that 10–20% may drop out before an evaluation is made. Certain pro-
tocols specify that there must be at least one evaluable post-dose observation 
to be included in a statistical analysis. ICH E9 (1998) refers to the data set used 
as the analysis data set. Therefore, to account for having a proportion of sub-
jects with no post-randomisation information we should recruit a sufficient 
number of subjects to ensure the evaluable sample size.

In addition, for trials such as those to assess non-inferiority, the per pro-
tocol data set would either be a primary or co-primary data set, so here the 
evaluable sample size would equate to the per protocol population.

As with obtaining a quantification of treatment effect or a variance dis-
cussed in Section 2.5 the number of dropouts or subjects in the per pro-
tocol data set could be assessed from retrospective studies and maybe 
pooled through methods such as meta-analysis. An example of the type 
of analysis is given in Figure 2.8, which provides the results of an analysis 
to quantify trial completion rates, which are used to assess the number 
of subjects in a completer data set as well as to assess how to analyse the 
data for the primary endpoint. There is a large amount of variability in 
the completion rates of the trials in this example, and although we do 
not go into detail of this here, an investigation would need to be made 
regarding which of these studies would be the most appropriate for the 
study planned.
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Key Messages

Obtaining an estimate of the variance is an essential step in the 
sample size calculation.
An effect size for calculating the study could be obtained 
through evaluating effects seen in previous studies.
Caution needs to be exercised if the effect is estimated from 
just a single study.
An estimated sample size is actually an evaluable sample size, 
and additional sample size calculations may be required to 
ensure a trial is of sufficient size to achieve the evaluable sam-
ple size.

Etoricoxib I
Etorixoxib II

Rofecoxib I
Rofecoxib II
Valdecoxib I
Valdecoxib II

Fixed

Random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Celecoxib II
Celecoxib I

Etoricoxib I
Etorixoxib II

Rofecoxib I
Rofecoxib II
Valdecoxib I
Valdecoxib II

Fixed

Random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Celecoxib II
Celecoxib I

(a) (b)

FIGURE 2.8 Trial completion rates: (a) placebo and (b) active.
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3
Sample Sizes for Parallel Group 
Superiority Trials with Normal Data

3.1 Introduction

This chapter describes the calculations for clinical trials in which the expec-
tation is that the data will take a plausibly Normal form and discusses the 
standard sample size calculations for trials in which the objective is to deter-
mine superiority. The chapter then describes how to undertake sensitivity 
analyses around the sample size calculations when designing a trial.

3.2 Sample Sizes Estimated Assuming the Population 
Variance to Be Known

As discussed in Chapter 1, in general terms for a two-tailed, -level test we 
require
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where 2 is the population variance estimate, and n rnB A. Note (3.2) is mini-
mised when r  1 for fixed n. Substituting (3.2) into (3.1) gives (Brush, 1988; 
Lemeshow et al., 1990)
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Note that in this section, and throughout the chapter for parallel group 
trials with Normal data, the assumption is made that the variances in each 
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group are equal, that is, that A
2  B

2  2. This assumption is referred to as 
homoskedasticity. There are alternative formulae for the case of unequal vari-
ances (Schouten, 1999; Singer, 2001), and Julious (2005d) described how the 
assumptions of homogeneity have an impact on statistical analysis. However, 
in the context of clinical trials under the null hypothesis the assumption is 
that the populations are the same, which would infer equal variances (as 
well as equal means).

When the clinical trial has been conducted and the data have been collected 
and cleaned for analysis it is usually the case that for the analysis the popula-
tion variance 2 is considered unknown, and a sample variance estimate s2 is 
used. As a consequence of this a t-statistic as opposed to a Z-statistic is used 
for inference. This fact should be represented in the sample size calculation, 
rewriting (3.3) so that t as opposed to Z-values are used. Hence, if the popu-
lation variance is considered unknown for the statistical analysis (which is 
usually the case) the following could be used:
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Unlike (3.3) this result does not give a direct estimate of the sample size 
as nA appears on both the left and right sides of (3.4). It is best to rewrite the 
equation in terms of power and then use an iterative procedure to solve for 
nA:
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where ( ) is defined as the cumulative density function of N(0,1). However, 
it is not just a simple case of replacing Z-values with t-values when a sample 
variance is used in the analysis. In this situation the power should be esti-
mated from a cumulative t-distribution as opposed to a cumulative Normal 
distribution (Senn, 1993; Brush, 1988; Chow, Shao and Wang, 2002; Julious, 
2004d). The reason for this is that by replacing 2 with s2 (3.5) becomes
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where P( ) denotes a cumulative distribution defined from 3.6. This equa-
tion can in turn be rewritten as
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by dividing top and bottom by 2. Thus, we have a Normal distribution 
over a square root of a chi-squared distribution, which by definition is a 
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t-distribution. More specifically, in fact as the power is estimated under the 
alternative hypothesis, and under this hypothesis d  0, the power should 
hence be estimated from a non-central t-distribution with degrees of free-

dom nA(r  1) − 2 and non-centrality parameter rn rA/( )1 2  (Senn, 1993; 
Brush, 1988; Chow, Shao and Wang, 2002; Kupper and Hafner, 1989; Julious, 
2004d). Thus, (3.5) can be rewritten as
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where probt ( , ( ) , /( ) )n r rn d rA A1 2 12 2  denotes the cumulative dis-
tribution function of a Student’s non-central t-distribution with n rA( )1 2 

degrees of freedom and non-centrality parameter rn d rA
2 21/( ) . Note here 

that the notation probt ( , ( ) , /( ) )n r rn d rA A1 2 12 2  is the same as that 
used in the statistical package SAS notation. Note also that when d  0 then 
we have a standard (central) t-distribution.

The differences between a non-central t-distribution and a Normal distri-
bution could be considered trivial for all practical purposes as illustrated by 
Figure 3.1, which plots the distributions together for different effect sizes. 
The fact that the two lines are mainly superimposable is telling. Note that 
when there is no difference between treatments (Figure 3.1a) the slightly 
fatter distribution is the t-distribution. For each figure the fatter of the two 
distributions is the t-distribution. At the most “extreme” (Figure 3.1d) we can 
see that the t-distribution is slightly skewed compared to the Normal distri-
bution, but the difference between the distributions is small.

Practically we could use (3.3) for the initial sample size calculation and then 
calculate the power for this sample size using (3.8), iterating as necessary until 
the required power is reached. To further aid in these calculations a correc-
tion factor of Z

1 2

2 4
/

/  can be added to (3.3) to allow for the Normal approxima-
tion (Guenther, 1981; Campbell, Julious and Altman, 1995; Julious, 2004d)
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For quick calculations the following formula to calculate sample sizes, 
with 90% power and a two-sided 5% Type I error rate, can be used:
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or for r  1
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The result of (3.10) comes from putting a 10% Type II error rate and a two-
sided Type I error of 5% into (3.3). Table 3.1 gives the actual calculated value 
from which (3.3) is derived.

Equations (3.11) and (3.10) are close approximations to (3.8), giving sample 
size estimates only one or two lower and thus providing quite good initial 

–5 –4 –3 –2 –1 0 1 2 3 4 5

–5 –4 –3 –2 –1 0 1 2 3 4 5

(b) 0.25

(c) 0.50

–5 –4 –3 –2 –1 0 1 2 3 4 5

(a) 0

–5

(d) 1.00

–4 –3 –2 –1 0 1 2 3 4 5

FIGURE 3.1 The Normal (dotted line) and t-distribution (solid line) estimated with 10 degrees 

of freedom for different effect sizes: (a) 0.0, (b) 0.25, (c) 0.50, (d) 1.00.

TABLE 3.1

Calculated Values for 2 1 1 2
2( )/Z Z  

for a Two-Sided Type I Error Rate of 

5% and Various Type II Error Rates
 

2( )1 1 2
2Z Z /

 
0.05 0.20 15.70

0.05 0.15 17.96

0.05 0.10 21.01

0.05 0.05 25.99
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estimates. Equation (3.5) is closer to (3.8), mainly giving the same result and 
occasionally underestimating by just 1. Although the difference in sample 
size estimates is small using the non-central t-distribution relative to the 
complexity added to the calculations the results are easy to program and 
hence tabulate for ease of calculation. As such, Table 3.2 gives sample sizes 
using (3.8) for various standardised differences (   d/ ).

3.3 Worked Example 3.1

The worked example described here is based on real calculations done day 
to day by applied medical researchers designing clinical trials. The first cal-
culation undertaken in the worked example includes a common mistake 
when undertaking sample size calculations; this is followed by the correct 
calculations.

TABLE 3.2

Sample Sizes for One Group, nA (nB  nA), in a 

Parallel Group Study for Different Standardised 

Differences and Allocation Ratios for 90% Power 

and a Two-Sided Type I Error of 5%
 

Allocation Ratios

1 2 3 4
 

0.05 8,407 6,306 5,605 5,255

0.10 2,103 1,577 1,402 1,314

0.15 935 702 624 585

0.20 527 395 351 329

0.25 338 253 225 211

0.30 235 176 157 147

0.35 173 130 115 108

0.40 133 100 89 83

0.45 105 79 70 66

0.50 86 64 57 53

0.55 71 53 47 44

0.60 60 45 40 37

0.65 51 38 34 32

0.70 44 33 30 28

0.75 39 29 26 24

0.80 34 26 23 21

0.85 31 23 20 19

0.90 27 21 18 17

0.95 25 19 17 15

1.00 23 17 15 14
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The calculations were based on the results taken from Yardley et al. (2004) 
in a trial of vestibular rehabilitation for chronic dizziness. In this trial the 
intervention arm was compared to usual care in a single-blind manner. 
The trial was not chosen because it had anything wrong with it but more 
because it was a well-analysed study that provided all the requisite infor-
mation for calculations.

3.3.1 Initial Wrong Calculation

Suppose now you wished to repeat the trial of Yardley et al. (2004) but with 
a single primary endpoint of “Dizziness Handicap Inventory” assuming an 
effect size of 5 to be of importance. It is decided to do the calculations with a 
two-tailed Type I error of 5% and 90% power.

The data for the variability are to be taken from Yardley et al. (2004), given 
in Table 3.3.

As there are two variance estimates an overall estimate of the population 
variance is obtained from the following:
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TABLE 3.3

Baseline Characteristics Mean (and standard deviation) Unless Presented as a 

Count (%)
 

Intervention Group

Vestibular Rehabilitation Usual Medical Care
 

Sample size 83 87

Age 62.93 (15.21) 61.01 (14.42)

Duration of dizziness (months) 98.00 (141.48) 101.01 (135.25)

Number (%) of participants

 Female 59 (71%) 62 (71%)

 Whose occupation

  Managerial/professional 39 (36%) 33 (22%)

  Intermediate 18 (23%) 23 (28%)

  Routine/semiroutine 21 (27%) 26 (32%)

 Taking medication for dizziness 44 (53%) 43 (49%)

 Who had previously undertaken 

 balance retraining

3 (4%) 2 (2%)

Vertigo Symptom Scale 16.57 (11.28) 14.70 (9.21)

Movement-provoked dizziness 27.28 (5.72) 26.56 (7.64)

Postural stability eyes open 586.49 (249.27) 561.38 (278.66)

Postural stability eyes closed 897.99 (459.94) 820.27 (422.45)

Dizziness Handicap Inventory 40.98 (22.52) 37.89 (19.74)
SF-36–Physical Functioning 65.67 (30.30) 69.37 (27.28)

HADS–Anxiety 7.37 (4.60) 7.24 (4.66)

HADS–Depression 3.77 (3.10) 3.48 (2.67)
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The degrees of freedom can be taken as the sample size minus one. Hence, 
the pooled estimate of the variance is
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giving a standard deviation of 21.14.
In truth (3.12) is a somewhat artificial calculation here in that we have only 

two variances from which to obtain an overall estimate. However, the result 
(3.13) can be generalised to many variances.

With an effect size of 5 the estimate of the sample size is 375.77 or 376 
evaluable subjects per arm using (3.3); the quick calculation of (3.10) provides 
the same sample size estimate. The result (3.8) that allows for the fact that a 
sample variance will be used in the analysis also estimates the sample size 
to be 376 evaluable subjects per arm.

3.3.2 Correct Calculations

The calculations now are repeated. Instead of using the table of baseline 
characteristics from Yardley et al. (2004), the variances taken from the statis-
tical analysis (given in Table 3.4) are now used. Here the mean differences 
are quoted with corresponding confidence interval. These were taken were 
from an analysis of covariance (ANCOVA) including the term for baseline in 
the analysis. For the confidence interval a pooled estimate of the standard 
deviation was used (sp).

TABLE 3.4

Statistical Analysis
 

Measure
N 

(Missing)

Vestibular 
Rehabilitation 

Mean (SE)

Usual 
Medical Care 

Mean (SE)
Difference 

between Groups
P- 

Value
 

Vertigo 

Symptom Scale

170 (13) 9.88 (0.76) 13.67 (0.74) −3.48 

(−5.59 to −1.38)

0.001

Movement-

provoked 

dizziness

169 (17) 14.55 (1.19) 20.69 (1.14) −6.15 

(−9.40 to −2.90)

0.001

Postural stability 

eyes open

168 (20) 528.71 (19.68) 593.71 (18.98) −65.00 

(−119.01 to −11.00)

0.019

Postural stability 

eyes closed

160 (20) 731.95 (32.05) 854.25 (30.48) −122.29 

(−209.85 to −34.74)

0.006

Dizziness 
Handicap 
Inventory

170 (18) 31.09 (1.52) 35.88 (1.48) −4.78 
(−8.98 to −0.59)

0.026
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As a result a pooled estimate of the standard deviation can be estimated 
because the confidence interval can be estimated from
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and an estimate of the standard deviation is
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Note that we have used Z-values here but we could also use t-values and 
t tables for this calculation.

Using the same effect size of 5 the sample size estimate is now 163.63 or 164 
evaluable subjects per arm using (3.3), the same as the quick result (3.10). The 
sample size estimate from (3.8) is 165 subjects, which we use in the following 
worked examples.

This sample size estimate is less than half the estimate from the previous 
calculation. This is because Table 3.3 used a variance estimated from sum-
mary statistics, while Table 3.4 used a variance estimated from an ANCOVA. 
This second variance is considerably smaller.

This point is not a trivial one. A consequence is that if you are planning to 
undertake an ANCOVA with baseline fitted as a covariate as your final analy-
sis, then the calculations described here that use a variance from an ANCOVA 
would be the correct approach. Failure to allow for baseline in sample size calcu-
lations when baseline will be accounted for in the final analysis could lead to a 
substantial overestimation of the sample size. Section 3.5 revisits this problem.

3.3.3 Accounting for Dropout

Suppose there was an anticipation of 15% dropouts in the planned study. The 
estimated sample sizes so far were evaluable subjects. What is therefore required 
is an estimate of the total sample size to get the requisite evaluable sample size.

Taking 165 as the evaluable sample size the total sample size would there-
fore be

 165/0.85  194.12

or 195 subjects per arm.
If possible the evaluable sample size could still be used for recruitment 

with the number of subjects enrolled until 165 evaluable subjects have com-
pleted the trial. In such instances the total sample size calculations would 
still be of value as they could be used for budgetary or planning purposes.
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Note a very common mistake when calculating the total sample size is to 
multiply the evaluable sample size by 1.15 and not divide by 0.85. Here this 
would erroneously return a sample size of 189.75 or 190 subjects.

3.4 Worked Example 3.2

It has been highlighted how important it is to use a variance estimate from an 
ANCOVA if such an analysis is to be undertaken in the planned study. However, 
often articles do not give confidence intervals but simply a mean difference and 
P-value. Suppose Table 3.4 presented the results in such a way then for the same 
effect size (5), power (90%) and Type I error rate (5%) the following calculations 
could be undertaken: We know that the P-value is calculated from
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We also know what the P-value is, so the standard deviation can be esti-
mated from
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If we use Normal distribution tables, then the Z-value to give a P-value of 
0.026 is 2.226. Hence the pooled estimate for the standard deviation is
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Note that, as with the confidence intervals discussed, we could also use 
t-values and t tables for this calculation.

The sample size estimate would hence be estimated from (3.8) as 166 evalu-
able subjects per arm.

3.5 Design Considerations

3.5.1 Inclusion of Baselines or Covariates

In the analysis of the results of a clinical trial, the effects of treatment on 
the response of interest are often adjusted for predictive factors, such as 
demographic (like gender and age) or clinical covariates (such as baseline 
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response), by fitting them concurrently with treatment. This section con-
centrates on the case when baseline is the predictive covariate of interest 
(although the results are generalisable to other factors), the design is a par-
allel group design and an ANCOVA, allowing for the baseline, is to be the 
final analysis. The Committee for Proprietary Medicinal Products (CPMP) 
issued notes for guidance on the design and analysis of studies with covari-
ates (CPMP, 2003).

Frison and Pocock (1992) gave a variance formula for various numbers of 
baseline measures:

 

Variance 2
2

1
1 1

p
p( )

.  (3.20)

Here,  is the Pearson correlation coefficient between observations—as-
suming compound symmetry—and p is the number of baseline or meas-
ures taken per individual. From this equation a series of correction factors 
can be calculated (Machin et al., 1997) that give the variance reduction and 
consequent sample size reduction for different correlations and numbers of 
baselines. The assumption here is that there is balance between treatments 
and the baseline (or covariate) of interest. Any imbalance will increase the 
variance from (3.20) and consequent sample size (Senn, 1997). With randomi-
sation the imbalance should be minimised, however.

From (3.20) it is clear that for fixed numbers of baseline measures the 
higher the correlation is, the greater the reduction in variance and conse-
quent sample size will be. For example, if three baseline measures were to 
be taken and the expected correlation between baseline and outcome is 0.5, 
the effect would be to reduce the variance to 0.6250  2. However, for the 
same number of baseline measures if the expected correlation between 
baseline and outcome is 0.7 then the effect would be to reduce the variance 
to 0.3875  2.

Another result from (3.20) is that for fixed correlation it seems that although 
there is incremental benefit with increasing numbers of baselines this incre-
mental benefit asymptotes at three baselines for all practical purposes. The 
results in Table 3.5 demonstrate this, giving the correction factors for a fixed 

TABLE 3.5

Effect of Number of Baselines on the Variance
 

Number of Baselines Variance
 

1 0.7500

2 0.6667

3 0.6250

4 0.6000

5 0.5833

6 0.5714
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correlation between baseline and outcome of 0.50 and difference numbers of 
baseline measures.

The results of Frison and Pocock (1992) are a little simplistic; for example, 
they assume that the within-subject errors are independent (Senn, Stevens 
and Chaturvedi, 2000). However, they do highlight the advantages of taking 
baselines in clinical trials.

The results in this section demonstrate the importance, when estimating 
the sample size, to take the variance estimate from the full model in which 
all covariates are present. They also highlight how, if we ignore baseline and 
covariate information when doing sample size calculations, we could poten-
tially be overestimating the sample size, which was demonstrated also in 
Worked Example 3.1. The variance taken from an analysis that allows for 
covariates should always be used in the sample size calculations if ANCOVA 
is to be the planned analysis.

3.5.2 Post-dose Measures Summarised by Summary Statistics

Often in parallel group clinical trials, patients are followed up at multiple 
time points. Making use of all of the information obtained on a patient has 
the desirable property of increasing the precision for estimating the effects of 
treatment. Naturally, as the precision is increased the variability is decreased, 
and we consequently need to study fewer patients to achieve a given power. 
Suppose we are interested in looking at the difference in the average of all of 
the post-dose measures:

 
H HA B A B0 1: : ,versus

where A Band  represent the means of the average of the post-dose measures 
in the two treatment populations. It should be noted that often in clinical trials 
when data are measured longitudinally it is the rate of change of a particular 
endpoint that is of interest. For example, in respiratory trials of chronic lung 
disease the hypothesis may focus on whether a treatment changes the annual 
decline in lung function. However, the simplest approach of taking the summary 
measure as the simple average of the post-dose assessments for each subject and 
taking the average of these averages across treatments to obtain A Band  is 
assumed to be the summary statistic used.

Assuming we have r post-dose measures and that the correlation between 
those measures is  the variance can be calculated as

 
Variance

2 1 1[ ( ) ]
,

r
r  

(3.21)

where 2 represents the variance of a given individual post-dose measurement.
When looking at (3.21) it seems that as the correlation between post-dose 

measures increases the variance increases, as does the total sample size 
required. This is because, although it may seem counterintuitive, the advan-
tage of taking additional measurements decreases as the correlation increases. 
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This fact is due to how the total variance 2 is constructed (Julious, 2000):

 
2 2 2

b w ,
 

(3.22)

where w
2 is the within-subject component of variation (as in cross-over tri-

als), and b
2 is the between-subject component of variation.

It is important here to distinguish between the within- (intra-) subject and 
the between- (inter-) subject components of variation. The within-subject 
component of variation quantifies the expected variation among repeated 
measurements on the same individual. It is a compound of true variation in 
the individual (and is discussed again in Chapter 4). The between-subject 
component of variation quantifies the expected variation of single measure-
ments from different individuals. If only one measurement is made per indi-
vidual it is impossible to estimate w

2 and b
2; consequently, only the total 

variation, given in (3.22), can be estimated.
If we know the between-subject variance and the correlation between the 

measures the within-subject variance can be derived from
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Therefore, for known variance components of 2 and correlation between 
measures, the variance that takes account of the number of post-dose measures 
is defined as
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(3.24)

Thus, formula (3.21) is actually quite intuitive. As for constant r the higher 
the correlation, from (3.23), the lower the within-subject variance is and, from 
(3.24), the lower the total variance and consequent sample size are. However, 
as  increases and w

2 falls, the effect of taking repeated measures diminishes 
as w

2 already constitutes a small part of the overall variance.
Equation (3.21) also gives the incremental benefit of taking additional post-

dose measures for fixed correlation. Like with the number of baselines it 
seems that although there is incremental benefit with increasing numbers 
of post-dose measures, the incremental benefit asymptotes at four post-dose 
measures for all practical purposes. The results in Table 3.6 demonstrate this, 
giving the correction factors for a fixed correlation between post-dose measures 
of 0.50 and difference numbers of post-dose measures.

3.5.3 Inclusion of Baseline or Covariates as Well as Post-dose 
Measures Summarised by Summary Statistics

As noted further savings in sample size can be achieved by accounting 
for baseline as a covariate. Frison and Pocock (1992) defined an additional 
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variance measure to account for the baseline (or multiple baselines) as a 
covariate and difference numbers of post-dose measures. Assuming there 
are p baseline visits and r post-dose visits the variance is defined as
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1 1
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3.6 Revisiting Worked Example 3.1

In Chapter 2 it was highlighted how assessing the variance used in the sam-
ple size calculations was important. What is an issue with the Yardley et al. 
(2004) paper used in the calculations in Worked Example 3.1 is that the pri-
mary analysis was a last observation carried forward (LOCF) analysis that 
included baseline (i.e. if there were no post-measurements then baseline was 
used to impute the outcome).

If you are not planning to undertake such an imputation, then there is an 
issue with using the variance from this study as the variance in your study 
would be larger. It is easy to demonstrate why.

Suppose we are designing a study with a single baseline and we have the 
variance from an ANCOVA defined as c

2. Thus, if we are using baseline 
in an LOCF, then fitting baseline as a covariate will produce an extraspe-
cial prediction of post-dose assessment. Formally, the correlation between 
baseline and post-dose assessment can be shown to be (Julious and Mullee, 
2008)

 BLOCF ( ),1
 

(3.26)

where  is the proportion of subjects for whom baseline is being carried for-
ward. It can be seen from visual inspection of (3.20) and (3.26) that the greater 
the , the greater the BLOCF is and the smaller the variance. Obviously if   1 
then BLOCF  1.

TABLE 3.6

Effect of Number of Post-dose Measures on the Variance
 

Number of Post-Dose Measures Variance
 

1 1.0000

2 0.7500

3 0.6667

4 0.6250

5 0.6000

6 0.5833
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For the illustrative example taken from Yardley et al. (2004) we have 
  0.67 and   0.12. Hence, from (3.26) we have BLOCF  0.71. In practice the 

correlation between baseline and post-dose assessments would be expected 
to be lower than for correlations between just post-dose assessments.

The objective of this little exercise is to reinforce the importance of investi-
gating how a study is to be analysed. If the planned analysis is different from 
the study from which the variance estimate was taken, then this may have 
an impact on the sample size.

An investigation of (3.20) and (3.26) is made in Table 3.7 for plausible values 
of  and . The leftmost column gives the actual correlation between base-
line and post-dose assessment (assuming no data missing). The subsequent 
columns give the correlations between baseline and post-dose assessment 
for different proportions of missing data (assuming baseline is carried for-
ward in a LOCF through a BLOCF).

3.6.1 Reinvestigating the Type II Error

Often when calculating a sample size the estimate produced for the effect 
size of interest could be smaller than that anticipated originally leading to 
sample sizes which may not be feasible. One solution to this problem would 
be to reduce the power of the study to 80%, say, for which for the same effect 
size (5) and standard deviation (13.95) the evaluable sample size would need 
to be 124 subjects per arm compared to 164 subjects per arm for 90% power.

Hence, 25% fewer subjects are required for an 80% powered study com-
pared to a 90% powered study (or 33% more subjects are required for a 90% 
powered study compared to an 80% powered study). However, within an 
individual study it should be highlighted that you are doubling the Type II 
error for this sample size saving.

In truth a sample size calculation is in many ways a negotiation. Another 
common situation is when the sample size is fixed and we wish to determine 
the effect size that can be detected for this sample size. This is fine as far as it 

TABLE 3.7

Increases in Correlation Due to Baseline Carried Forward for 

Different Actual Correlations between Baseline and Post-dose 

Assessment and Different Proportion of Missing Data
 

Proportion of Subjects Missing Data ( )

0.050 0.100 0.150 0.200
 
0.90 0.905 0.910 0.915 0.920

0.80 0.810 0.820 0.830 0.840

0.70 0.715 0.730 0.745 0.760

0.60 0.620 0.640 0.660 0.680

0.50 0.525 0.550 0.575 0.600
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goes, but it depends on how the calculation is then written. If the text in the 
protocol appeared as

For 90% power and a two-tailed Type I error rate of 5% with an estimate 
of the population standard deviation of 13.95 and an effect size of 5.742 
the sample size is estimated as 125 evaluable subjects per arm.

This would be inappropriate as the sample size came first and was not cal-
culated. It is far better to say what the actual power is and if nothing else to 
flag the risks being taken for budgetary concerns. More appropriate wording 
would be of the form

The sample size is 125 evaluable subjects per arm. This sample size is 
based on feasibility. However, with 90% power and a two-tailed Type I 
error rate of 5% with an estimate of the population standard deviation of 
13.95 this sample size could detect an effect size of 5.742.

3.7 Sensitivity Analysis

One potential issue with conventional calculations is that they usually rely 
on retrospective data to quantify the variance to be used in the calculations. 
If this variance is therefore estimated imprecisely, then it would have an 
impact on the calculations.

A main assumption in the calculations therefore is that the variance used 
in the calculations is the population variance when in fact we have estimated 
it from a previous study. What therefore needs to be assessed a priori is the 
sensitivity of the study design to the assumption around the variance. On 
the issue of sensitivity the International Conference on Harmonisation of 
Technical Requirements for Registration of Pharmaceuticals for Human Use 
(ICH) E9 (1998) makes the following comment, with the emphasis that of the 
author:

The method by which the sample size is calculated should be given 

in the protocol, together with the estimates of any quantities used in 

the calculations (such as variances, mean values, response rates, event 

rates, difference to be detected).  It is important to investigate the sen-
sitivity of the sample size estimate to a variety of deviations from these 

assumptions.

The sensitivity of the trial design to the variance is relatively straightfor-
ward to investigate and can be done using the degrees of freedom of the vari-
ance estimate used in the calculations. This concept was described by Julious 
(2004a). Firstly, we need to calculate the sample size conventionally using an 
appropriate variance estimate. Next, using the degrees of freedom for this 



60 Sample Sizes for Clinical Trials

variance and the chi-squared distribution, we can calculate the upper one-
tailed 95th percentile, say, for the variance using

 

s
df

sp
df

p
2

0 05
2

295( ) .
. ,  

(3.27)

Here, sp
2 is taken from (3.12), which is estimated with the degrees of 

freedom

 

df dfp i

s

n

1

.

 

(3.28)

Then this upper estimate of the variance can be used in (3.8) to investigate 
the power. This would give an assessment of the sensitivity of the study to 
deviations from the variability assumptions by investigating a study’s power 
to an extreme plausible value that the variance could take.

3.7.1 Worked Example 3.3

For Worked Example 3.1 we had a pooled estimate of the standard deviation 
of 13.95 and we wished to detect a difference of 5 with 90% power and two-
sided significance level of 5%. The variance was estimated from 170 subjects, 
which would correspond to around 168 degrees of freedom.

We have 0 05 168
2 138 03. , . ; hence from (3.26) we have

 
sp

2 295
168

138 03
13 95 235 15( )

.
. . .

Therefore a highly plausible value for sp is 15.33. If the true standard devi-
ation was nearer to 15.33 than the 13.95 used in the calculations, then we 
would actually have 84% power. We could hence conclude that that study is 
reasonably robust to the assumptions about the variance.

Suppose, however, the sample variance estimate was only estimated with 
25 degrees of freedom. We would then have 0 05 25

2 14 61. , . ; hence we would 
have that

 
sp

2 295
25

14 61
13 95 194 60( )

.
. . .

We thus have a highly plausible value for sp as 18.25. If the true standard 
deviation was nearer to 18.25 than the 13.95 used in the calculations, then we 
would actually have 70% power. This is not too alarming, but consideration 
may need to be given to accounting for this imprecision somehow. We could 
do a sample size re-estimation (discussed separately in this chapter), or else it 
may be expedient to highlight to the team the sensitivity of the study design 
to the assumptions being made in the sample size calculation.
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3.8 Calculations Taking Account of the Imprecision of 
the Variance Used in the Sample Size Calculations

We have highlighted thus far how when designing a trial typically 2 would 
be unknown, but the choice of sample size, which depends crucially on 

2, has to be decided before any observations in the prospective trial have 
been made. The simplest approach is just to assume that 2 is known and 
take an ‘assumed value,’ which is the basis for traditional sample size for-
mulae discussed in this chapter. In reality the assumed value is obtained 
from an estimate s2 of 2 from previous similarly designed studies using 
the same endpoint.

To account for the fact that we are using s2 and not 2 the following result 
can be used to estimate the power (Julious, 2002; Julious and Owen, 2006):

 

probt
rn d
r s

m tA
n rA

2

2 1 2 1 21
1

( )
, , , ( ) ,

 

(3.29)

where m here is the degrees of freedom about s2, the estimated variance. 
When (3.29) is rewritten in terms of the sample size it becomes

 
n

r s tinv m t
A

n rA
( ) [ ( , , )]/ , ( )1 12

1 2 1 2
2

rrd2
,
 

(3.30)

which if we replace the t-statistic with the Z-statistic becomes

 
n

r s tinv m Z
rdA

( ) [ ( , , )]/1 12
1 2

2

2
 

(3.31)

This last result, (3.31), may be thought of as a version of (3.3) that has been 
adjusted for uncertainty about the unknown true sampling standard devia-
tion .

As relationships (3.20) and (3.30) both have to be solved by iteration for 
a given power (3.31) can be used to provide initial values to start the itera-
tion. From simple empirical observation it seems that an expected power 
of at least 1 −  is ensured through adding 1 to the sample size obtained 
from (3.31).

It is worth noting when considering the approximate formula for nA of (3.3) 
and (3.31) that the ratio of these depends on ,  and m but not on r, s or d. 
Hence a ratio of (3.3) and (3.31) would give you an inflation factor (IF) to 
account for the imprecision in the sample variance.

 

Inflation Factor (IF)
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(3.32)
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Some values for (3.32) are given in Table 3.8. This table could be used to pro-
vide multiplication factors when standard formulae are used to calculate the 
sample size, such as (3.3), (3.4) or (3.8), to account for the imprecision in the 
variance.

Note the sample sizes from (3.31) converge to (3.4) as nA becomes large. 
In this chapter, using (3.8), the sample sizes were also derived from a non- 
central t-distribution. However, as (3.31) converges to (3.4) there will be 
instances for large m for which (3.31) gives a sample size one smaller than 
(3.8). For the IFs, because Z1 2/  not t n rA1 2 1 2/ , ( )  is used, (3.8) becomes (3.3). 

TABLE 3.8

Multiplication Factors for Different Levels of Two-Sided 

Significance, Type II Error and Degrees of Freedom
 

Two Significance Level ( )

m 0.010 0.025 0.050 0.100
 

5 0.05 2.232 2.145 2.068 1.980

0.10 1.819 1.761 1.711 1.652

0.15 1.614 1.571 1.533 1.489

0.20 1.482 1.449 1.419 1.385

0.50 1.122 1.120 1.117 1.114

10 0.05 1.488 1.454 1.425 1.392

0.10 1.346 1.322 1.301 1.276

0.15 1.268 1.249 1.233 1.214

0.20 1.215 1.200 1.187 1.172

0.50 1.056 1.055 1.054 1.053

25 0.05 1.172 1.160 1.150 1.139

0.10 1.126 1.117 1.109 1.101

0.15 1.100 1.092 1.086 1.079

0.20 1.081 1.075 1.070 1.065

0.50 1.021 1.021 1.021 1.021

50 0.05 1.083 1.077 1.072 1.067

0.10 1.061 1.057 1.053 1.049

0.15 1.049 1.045 1.042 1.039

0.20 1.040 1.037 1.034 1.032

0.50 1.010 1.010 1.010 1.010

75 0.05 1.054 1.051 1.047 1.044

0.10 1.040 1.037 1.035 1.032

0.15 1.032 1.030 1.028 1.026

0.20 1.026 1.024 1.023 1.021

0.50 1.007 1.007 1.007 1.007

100 0.05 1.040 1.038 1.035 1.033

0.10 1.030 1.028 1.026 1.024

0.15 1.024 1.022 1.021 1.019

0.20 1.020 1.018 1.017 1.016

0.50 1.005 1.005 1.005 1.005
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Hence, the IFs hold regardless of the original sample size calculation as they 
are large sample results.

3.8.1 Worked Example 3.4

We revisit Worked Example 3.3 in which it was imagined that the variances 
were estimated with 25 degrees of freedom. Previously the sample size, 
assuming the variance in the calculations to be a population variance, was 
estimated using (3.8) at 165 patients in each arm of the trial. From Table 3.8 
we can see that to account for the imprecision in the sample variance we 
would need to increase the sample size estimated by 11% to 184 (rounded 
from 183.15) patients per arm. An inversion of this argument would be to say 
that by assuming that the standard deviation was a population estimate the 
sample size could be considered to be underestimated by 10%.

It may seem an unrealistic scenario to undertake a large study in which the 
calculations are based on such few degrees around the variance. However, it 
is not an unknown occurrence to design a study based on a few degrees of 
freedom, particularly early in drug development. For all trials, therefore, par-
ticularly those in which the design is sensitive to assumptions, it is strongly 
recommended to have some form of adaptive component to the design.

3.9 Interim Analyses and Sample Size Re-estimation

When NASA (National Aeronautics and Space Administration) launches a 
rocket to Mars it does not point the rocket in the general direction of its tar-
get and launch it with a vain hope that in 2 years it will hit the red planet. It 
continuously monitors the course of the rocket, tinkering and modifying its 
route to optimise the chances of success. Analogously in clinical trials why 
should we set up the study and then hope that the assumptions on which the 
trial was designed were correct?

Throughout this chapter the trial design assumptions we have investi-
gated have been about the trial’s variability. One approach to the problem of 
having an uncertain estimate of the variability is to be adaptive. The advan-
tage of being adaptive is that it allows you to alter or stop the course of a 
study during its actual conduct such that unexpected occurrences are not 
encountered for the first time when the study has been completed and the 
final analysis undertaken. There are three approaches that we can adopt for 
adaptive designs (Julious, 2004a):

 1. Group sequential design: The sample size in each group is fixed, 
but interim analyses are undertaken to test the null hypothesis 
with a decision made at each analysis to stop the trial for success or 
failure or to enrol another cohort.
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 2. Fixed interim analyses: The parameters used in the estimation of 
the sample size are re-estimated, such as the variance for Normal 
data, and the sample size is adjusted accordingly. The null hypoth-
esis is not tested.

 3. A combination of approaches 1 and 2: At the interim analyses 
both the null hypothesis is investigated and the sample size is 
re-estimated—conditional on whether the trial is stopped for suc-
cess or failure.

The first two approaches are relatively straightforward, but the third is 
more complex as the sample size re-estimation depends on a decision on the 
null hypothesis. This section concentrates on the first two designs but only 
in the context of the effect on the sample size.

3.9.1 Interim Analyses

There are methodological considerations when deciding whether to under-
take an interim analysis. However, an initial consideration may well be bud-
getary, and a main consideration here could be the possible increase in the 
sample size as the sample size has an impact on the cost of the study.

The impact of the interim analysis on the sample size is determined by 
why we are undertaking the interim analysis. We need to maintain the over-
all Type I error rate at the nominal level set a priori (usually 5%) and having 
interim analyses has the potential to increase the Type I error. Therefore to 
maintain the overall Type I error at or below the nominal level we need to 
make an appropriate adjustment. Adjusting the Type I error will in turn have 
an impact on the sample size. The effects of the different adjustments are 
now discussed in detail.

3.9.1.1 Worked Example 3.5

For Worked Example 3.1 it was calculated that 165 subjects per arm were 
required. Suppose for the study three equally placed interim analyses are 
planned. The purpose of these interim analyses is primarily to assess safety; 
however, efficacy will also be examined, although the study will only stop 
for efficacy for “wonder” effects (i.e. very highly significant results).

O’Brien and Fleming (1979) stopping rules were hence proposed for the 
study as these set stopping boundaries that are very hard to cross at the 
difference interim analyses. Table 3.9 gives the stopping boundaries for 
the different interim analyses. For example, at the very first interim analy-
sis the critical value for the Z-statistic is 4.084, which would equate to a 
P-value of 0.000044.

There is a penalty for these interim looks: At the end of the study the 
Z- value is 2.042, and the nominal P-value is 0.044003. As the nominal P-value 
has been reduced at the end there is a penalty in the form of the sample size 
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although as only a small proportion of the alpha has been spent early, so the 
sample size has been increased by 9 to 174. Hence the cost in terms of sample 
size is quite small.

Suppose there is a desire to stop the study early. For this, the trial is run 
as a sequential trial with a request that the alpha is spent equally at each 
interim analysis. Pocock (1983) stopping rules can be used.

Table 3.10 gives the stopping boundaries for the different interim analy-
ses. For example at the very first interim analysis the critical value for the 
Z-statistic is 2.368, which would equate to a P-value of 0.017869. The penalty 
for the interim looks is now greater, such that if the trial went to the final 
analysis without stopping the final P-value would be 0.017869. As more alpha 
has been spent at the interim analyses there is a greater penalty in terms of 
the sample size, with it having to increase to 209 subjects per arm to account 
for the interim analysis.

A more generic solution for the O’Brien–Fleming method can be found 
using Table 3.11 and Table 3.12. The final row for each column for Table 3.11 
is taken from O’Brien and Fleming (1979). The subsequent rows are taken by 
multiplying this value by

 

J
i

,
 

(3.33)

where J is the total number of interim analyses, and i is the interim analy-
sis number.

The nominal significance levels for the boundary values are given in Table 3.12. 
Hence, to calculate a sample size when five analyses are to be undertaken use a 

TABLE 3.9

O’Brien–Fleming Stopping Boundaries and P-values for Different Interim Analyses
 

Proportion of Information

0.25 0.50 0.75 1.00
 

Critical value 4.084 2.888 2.358 2.042

Nominal P value 0.000044 0.003878 0.018375 0.041146
 

TABLE 3.10

Pocock Stopping Boundaries and P-values for Different Interim Analyses
 

Proportion of Information

 0.25 0.50 0.75 1.00
 

Critical value 2.368 2.368 2.368 2.368

Nominal P-value 0.017869 0.017869 0.017869 0.017869
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conventional result—such as (3.3), (3.4) and (3.8)—but use the significance level 
of 0.041659 taken from Table 3.12 to calculate the sample size.

Pocock’s method is a little more straightforward; calculate the nominal 
level of significance for each interim as

 
ln( ( )/ ),1 1e J

 (3.34)

from which the critical values are calculated. This nominal level of signifi-
cance, given in Table 3.13, is then used to calculate the sample size using (3.3), 
(3.4) or (3.8).

Note the methodology for calculating sample sizes allowing for inter-
ims described here is a little conservative as it only uses the significance 
levels at the final analysis to calculate the sample size. In the actual 
trial the study planned could also have declared a significant result at 
each of the interims that is not being accounted for in the sample size 
calculations.

In summary, therefore, how you spend your P affects the impact of the 
interim analysis. If you have small P’s at the interim analysis then you will 
have a big P at the end. However, if you have bigger P’s at the interim, then 
you will have a smaller P at the end.

TABLE 3.11

Critical Values for O’Brien–Fleming Method for Different Interim 

Analyses Schedules
 

Number of Interim Analyses

Interim Number 2 3 4 5
 

1 2.802856 3.438023 4.084116 4.554668

2 1.966977 2.431049 2.887906 3.220637

3 1.984943 2.357965 2.629639

4 2.042058 2.277334

5 2.036909
 

TABLE 3.12

Nominal P-values for O’Brien–Fleming Method for Different Interim 

Analyses Schedules
 

Number of Interim Analyses

Interim Number 2 3 4 5
 

1 0.005065 0.000586 0.000044 0.000005

2 0.049186 0.015055 0.003878 0.001279

3 0.047151 0.018375 0.008548

4 0.041146 0.022766

5 0.041659
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3.9.2 Sample Size Re-estimation

If the variance estimates are imprecisely estimated prior to the start of the trial, 
a sample size re-assessment could be made at some point during the study.

A simple solution would be to have an independent third party analyse the 
data in an unblinded manner and provide a new estimate of the variance. 
There may be strictly no methodological issues with this approach; however, 
there could be a concern if there are just two arms in the trial as the total 
variation would be known or easily estimated.

Source of Variation DF SS MS

Between Treatment Group XX XX XX
Within Group XX XX XX

Total XX XX

If the third party uses with the within-group variation for sample size re-
assessment, then the within-group variation may become known. 

Source of Variation DF SS MS

Between Treatment Group XX XX XX
Within Group XX XX XX

Total XX XX

Then through knowing the within-group variation and the total variation 
we would be able to estimate the between-group effect.

Source of Variation DF SS MS

Between Treatment Group XX XX XX
Within Group XX XX XX

Total XX XX

With more than two treatment arms this issue may be less of a concern.

TABLE 3.13

Critical Values and Nominal Significance Levels for Pocock Method for Different 

Interim Analyses Schedules
 
Number of Interim Analyses

2.000000 3.000000 4.000000 5.000000
 

Nominal significance level 0.031006 0.022642 0.017869 0.014770

Critical value 2.156999 2.279428 2.368328 2.437977
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The convention when undertaking a sample size re-assessment is to have 
some form of restricted sample size re-estimation with the following proce-
dure applied:

 1. Take an initial estimate of the same size n (say).

 2. After a proportion of subjects has been enrolled (say n/2) re- 
calculate the sample size n1 using the same sample size criteria 
Type I error, power, effect size.

 3. The re-estimated sample size is taken as max(n, n1).

The estimate of the variance could be made through a third-party 
unblinded analysis or an estimate of the variance could made in a blinded 
manner using the between-group difference used in the sample size calcu-
lation and taking this away from the total variance (obtained from a blind 
analysis) to get an estimate of the within-group variance.

Note the sample size is not reduced to protect the Type I error as without 
the restriction the Type I error could increase. To explain why this is true 
imagine that our trial is to have one interim analysis such that the data are 
collected in two parts (1 and 2) with no restriction on the sample size.

If the estimated variance from the first part is low compared to what we 
planned for trial, then we would reduce the amount of data collected in part 2. 
Conversely, if the estimated variance in part 1 is large compared to what we 
planned, then we would increase the sample size.

Now for the final analysis with standard statistical methods, ignoring 
the sample size re-estimation, the estimate of the variability in the data is 
biased downwards.

If by chance part 1 has a small observed variance, then we have 
increased its importance by reducing the amount of data in part 2.

If by chance part 1 has a larger observed variance, then we down-
weight this by increasing the size of part 2.

This means that the estimate of overall variance is biased downwards, 
and the Type I error is inflated. Hence, if we use the “restricted” approach 
and look at the characteristic of the procedure when actual variance is the 
same as the prior variance we still have the same problem of downweight-
ing the part I data when the observed variance is high. However, when the 
observed variance in the part 1 data is low we give it equal weight with 
the part 2 data. Hence, the effect on the overall variance estimate is less 
extreme than that in the other direction as we are using equal weight (using 
original size n) if observed variance is low, so we have removed “half” the 
problem.
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Hence, having a restriction in the sample size re-estimation reduces but 
does not totally remove issues with the Type I error. Suppose we estimate 
the within-group variance using the between-group difference used in the 
sample size calculation. In a blinded sample size re-estimation, therefore, 
if the separation between observed location parameters (sample means) is 
larger than planned the variance will be overestimated, and the sample size 
will be increased. If it is smaller the estimated variance will be lower, and a 
smaller overall sample size will be used. Under the null hypothesis therefore 
the sample size will remain the same with a restricted approach. Also under 
the null hypothesis, if by chance the difference between means is large we 
downplay part 1; if it is by chance small, we overplay part 1; this has the 
effect of reducing the Type I error.

3.10 Cluster Randomised Trials

In this book there is a focus on trials in a regulatory setting. In such tri-
als subjects are randomised at the individual level to receive treatment. For 
health technology assessments it may not always be possible to randomise 
at the individual level due to pragmatic considerations. Instead, subjects are 
randomised at the level of hospital, primary care practice or practitioner 
level or time window; hence subjects are cluster randomised.

Cluster-randomised trials are therefore experiments in which intact social 
units rather than independent individuals are randomly allocated to inter-
vention groups. Examples include communities selected as the experimental 
unit in trials evaluating mass education programs, schools selected as the 
experimental unit in trials evaluating smoking prevention programs and 
families selected as the experimental unit in trials evaluating the efficacy of 
dietary interventions.

The reasons for adopting a cluster randomisation include administrative 
convenience, to enhance subject compliance and to avoid treatment group 
contamination. The last is of particular importance for instance for educa-
tion initiative given in a primary care setting, for which it may not be feasible 
to give the intervention to one subject without other subjects in the same 
practice also being exposed.

There are disadvantages of cluster-randomised trials particularly if there is 
a between-cluster variation, the presence of which has the effect of reducing 
the effective sample size. The extent of the problem depends on the degree 
of within-cluster correlation and on average cluster size. There are a num-
ber of possible reasons for between-cluster variation. For example, subjects 
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frequently select the clusters to which they belong (e.g. patient characteristics 
could be related to the primary care practice); important covariates at the 
cluster level affect all individuals within the cluster in the same manner; 
individuals within clusters frequently interact and as a result may respond 
similarly; finally there is a tendency for infectious diseases to spread more 
rapidly within rather than among families or communities.

A consequence of the issues associated with cluster-randomised trials is 
that standard approaches for sample size estimation and statistical analysis 
do not apply as standard sample size approaches would lead to an under-
powered study, and applying standard statistical methods would generally 
tend to biased estimates.

An important consideration in designing cluster-randomised clinical tri-
als is the estimation of the intracluster correlation coefficient (ICC) , such 
that the more similar the individuals in the same cluster are, the bigger the 
ICC will be. In terms of variance components the overall response variance 

2 may be expressed as the sum of two components, that is,

 
2 2 2

B w ,
 

(3.35)

where here B
2 is defined as the between-cluster component of variance and 

w
2 as the within-cluster component of variance. Now
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(3.36)

Note that w
2 2 1( ).

3.10.1 Quantifying the Effect of Clustering

Consider a trial in which k clusters of size m are randomly assigned to each 
of experimental and control groups. Also, assume the response variable Y is 
Normally distributed with common variance 2. The study is being designed 
as a superiority trial with the objective to test H0: A  B.

Appropriate estimates of A and B are x xA B
2 2and  the sample means, which 

have the common variance

 

[ ( ) ]
,

1 1 2m
km  

(3.37)

where  is the ICC, k is the number of clusters and m here is the average 
sample size per cluster.
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3.10.2 Sample Size Requirements for Cluster-Randomised Designs

Suppose k clusters of size m are to be assigned to each of two intervention 
groups. Recall from (3.3) under the Normal approximation assumption the 
sample size for an individually randomised trial can be estimated from

 
n

Z Z

dA

2 2
1 2 1

2

2

( )
.

/

 

(3.38)

To account for the effect of clustering the sample size for the number of sub-
jects per intervention from (3.37) and (3.38) can be estimated from (Donner 
and Klar, 2000)
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(3.39)

From taking the ratio of (3.38) over (3.39) an IF can be estimated,

 IF 1  (m  1) , (3.40)

to account for the cluster randomisation. Alternatively, in terms of clusters 
the sample size is estimated to be
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2
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(3.41)

Actually, the results from (3.38) and (3.39) are not too dissimilar. Remember 
the chapter discussion regarding the effect of covariates on the sample size 
such that if a single baseline was collected that was correlated with outcome 
by  the sample size could be estimated from

 
n

Z Z
dA

2 12
1 2 1

2 2

2
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./

 

(3.42)

In practice the result (3.42) is seldom used because for individually ran-
domised trials a variance is used for sample size calculations appropriate for 
the study planned. Chapter 2 discussed how to assess the variance such that 
if the design, population and analysis from the study from which it is taken 
are similar to the one being planned then (3.38) could be applied. Similar 
principles should be considered for cluster-randomised trials; if variance 
estimates are from trials ostensibly similar to the trial planned, then (3.38) 
could be used.



72 Sample Sizes for Clinical Trials

 
 Key Messages

The variance used in the sample size calculation should reflect 
the planned analysis.
Using an inappropriate variance could lead to a substantial 
over- (or under-) estimate in the sample size.
Spending time to obtain an optimal variance estimate could 
have a substantial benefit for the design of the trial in terms of 
the sample size.
Consideration should be given to investigating the sensitivity 
of the sample size calculations to the assumptions in the calcu-
lations, particularly around the variance.
When undertaking a sample size re-estimation for a blinded 
trial it may actually be possible to estimate the within-group 
variance and possibly unblind the trial.
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4
Sample Size Calculations for Superiority 
Cross-over Trials with Normal Data

4.1 Introduction

This chapter describes the calculations for cross-over clinical trials in which 
the expectation is that the data will take a plausibly Normal form. The 
emphasis in this chapter is on sample size calculations for trials in which the 
objective is to determine superiority.

4.2 Sample Sizes Estimated Assuming the Population 
Variance to Be Known

For the analysis of cross-over trial data this chapter concentrates on the case 
when an analysis of variance (ANOVA) is the primary analysis, fitting terms 
for subject, period and treatment. The assumption is that we are undertak-
ing an AB/BA cross-over trial, although the methodology described can be 
extended to a pairwise comparison in a multiperiod cross-over trial (with 
appropriate adjustment to the degrees of freedom). With the analysis it is 
the within-subject residual errors that are assumed to be sampled from a 
Normal distribution.

There are alternative approaches for analysing cross-over trial data: the 
paired t test and the period adjusted t test. We now briefly describe these 
methods and the ANOVA approach.

4.2.1 Analysis of Variance

Suppose we have two groups of paired observations: x11, x12,  , x1n in group 
1 and x21, x22,  , x2n in group 2 such that each group is measured on n sub-
jects in two periods so that each subject receives both treatments, and it is 
the mean difference that is of interest x x1 2. To undertake this analysis we 
would need to fit a general linear model and then use contrasts to estimate 
the difference in means.
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The test statistic will be constructed using the within-subject standard 
deviation (SD) sw from the residual line of the ANOVA

 

t
x x

s nw

1 2

2( )/
.  (4.1)

Under the null hypothesis, t is distributed as Student’s t, with n − 2 degrees 
of freedom.

4.2.2 Paired t-tests

For a paired t-test we simply place the observed individual effects on the 
two treatments in two columns, ignoring any ordering. For each subject a 
treatment difference is calculated di and consequently a mean of these differ-
ences d

_
, equivalent to A B, and a SD of the differences d. The test statistic 

is thus

 

d n
sd

,  (4.2)

which is compared to the t-distribution on n − 1 degrees of freedom.
Note if the period is not fitted into the model with the ANOVA approach 

then this would be equivalent to the paired t-test; that is, (4.2) would be 
equivalent to (4.1).

4.2.3 Period-Adjusted t-tests

In a period-adjusted t-test for each treatment sequence (AB or BA) a mean 
difference is calculated d

_
AB, equivalent to A B, and d

_
BA, equivalent to 

B A. Assuming that the allocation to each sequence nAB  nBA  n/2 and 
the within-sequence variances s s sd d dAB BA

2 2 2 are equal, then the mean dif-

ference of interest (d
_

AB  d
_

BA)/2 has the variance s n n s nd AB AB d
2 21 1 4( / / )/ / / . 

Thus, the test statistic is

 

1 2/ ( )

/
,

d d

s n
AB BA

d  

(4.3)

which is compared to the t-distribution on n − 2 degrees of freedom.
Note if period is fitted into the model with the ANOVA approach then 

this would be equivalent to the period-adjusted t-test; that is, (4.3) would be 
equivalent to (4.1).

If there is truly no period effect,
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(4.4)
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and thus we would have an equivalent test to a paired t-test but with one less 
degree of freedom.

The reason why the approaches are the same is because sd
2  2 sw

2; hence from 
inspection of (4.1), (4.2) and (4.3) we can see how the inference is the same.

4.2.4 Summary of Statistical Analysis Approaches

As highlighted, the three different statistical analysis approaches are approx-
imately equivalent especially if there is period effect. So why highlight them? 
As with other chapters it is important to use a variance appropriate to the 
analysis that will be undertaken in the study being designed.

All the results in this chapter assume that an ANOVA will be the final 
analysis, and thus a within-subject variance is used in sample size estimation 

w
2. If a variance is being estimated from a previous study in which a paired 

t-test was applied, then the variance of the difference d
2 would be estimated. 

Thus, for this example it would be important to convert the estimate of d
2 to 

w
2 or the sample size would be overestimated by a factor of two.

4.2.5 Sample Size Calculations

To estimate a sample size for a cross-over trial as well as quantify the within-
subject estimate of the difference in treatment means that is of interest, the 
effect size, we also need an estimate of the within- (intra-) subject SD w. 
The within-subject SD is taken from the residual line of an ANOVA model 
and quantifies the expected variation among repeated measurements on the 
same individual (Julious, Campbell and Altman, 1999). With an estimate of 
both the within-subject SD and the effect size a sample size can be calculated 
similar to parallel group studies discussed in Chapter 3
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(4.5)

where n here is the total sample size.
Note that with cross-over trials, unlike parallel group trials, there is no 

allocation ratio because in a cross-over trial the meaning of r would be the 
allocation ratio per treatment sequence AB and BA. The assumption in (4.5) 
is that subjects will be equally assigned to each sequence. If a sample vari-
ance is to be used in the analysis, then we can rewrite (4.5) as
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(4.6)

which in turn can be rewritten in terms of power to solve iteratively for n

 

1
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2 1 2 2
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w
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Similar to parallel group trials, when the population variance is considered 
unknown for the statistical analysis, under H1: d   0 the Type II error (and 
hence the power) should be calculated under the assumption of a non-central 
t-distribution with degrees of freedom n − 2 and non-centrality parameter 

nd w
2 22/  (Senn, 1993; Kupper and Hafner, 1989; Julious, 2004d). Thus, (4.7) 

can be rewritten as

 

1 2
21 2 2
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(4.8)

In the same manner as a parallel group study we can add a correction factor 
of Z1 2

2 2/ /  to (4.5) to allow for the Normal approximation and use this for 
initial calculations in (4.8) (Guenther, 1981):
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(4.9)

For quick calculations we can adapt (4.5) for the calculation of sample sizes 
with 90% power and a two-sided 5% Type I error rate.

 
n

d
w21 2

2
.
 

(4.10)

The sample size results (4.9) and (4.10) are slightly smaller than from (4.8); also 
compared to (4.8), (4.7) will mostly give the same sample size—occasionally 
underestimating by 1. Table 4.1 gives sample sizes using (4.8) for various 
standardised differences (   d/ ).

The total sample sizes for a cross-over trial is nearly equivalent to that 
for one arm of parallel group studies, for each standardised difference  in 
Chapter 3. The slight differences are accounted for by the different degrees 
of freedom used in (4.8) and the equivalent result from Chapter 3 for paral-
lel group trials. Practically, though, they are the same. It should be noted, 
however, that the standardised differences in Table 4.1 represent different 
quantities from those for parallel group trials. The within-subject variance 
in a cross-over trial can be derived from

 w
2 2 1( ),

 
(4.11)

where 2 is the population variance from a conventional parallel group design, 
and  is the Pearson correlation coefficient estimated between two measures 
on the same subject. For a relatively modest correlation of 0.5, the within-
subject variance would be half the population variance, and as a consequence 
the equivalent standardised difference would be 40% larger in a cross-over 
compared to a parallel group study. Parallel group and cross-over trials will 
only have an equivalent standardised difference for a zero correlation.
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4.2.6 Worked Example 4.1

Pollock et al. (2005) described a cross-over trial in patients with symptoms of 
hypothyroidism. The intervention arm was compared to placebo in a double- 
blind manner.

Suppose we wished to repeat the same trial but with a single primary end-
point of thyroid-stimulating hormone, taking the effect size to be 1 (mU/l) 
and assuming 85% of patients will complete the trial. The study is to be anal-
ysed through an ANOVA. Assume a two-tailed Type I error of 5% and 90% 
power using the data for the variability from Table 4.2.

TABLE 4.1

Total Sample Sizes for a Cross-over 

Study for Different Standardised 

Differences for 90% Power and 

Two-Sided Type I Error Rate of 5%
 

n
 

0.05 8,408

0.10 2,104

0.15 936

0.20 528

0.25 339

0.30 236

0.35 174

0.40 134

0.45 106

0.50 87

0.55 72

0.60 61

0.65 52

0.70 45

0.75 40

0.80 35

0.85 32

0.90 29

0.95 26

1.00 24

1.05 22

1.10 20

1.15 19

1.20 17

1.25 16

1.30 15

1.35 14

1.40 13

1.45 13

1.50 12
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First we need to estimate the within-subject SD sw. We have from the con-
fidence interval around thyroid-stimulating hormone that

 

s
Z n

w
Upper CI bound Lower CI bound

2 21 2/ /

11 76 0 59

2 1 96 2 22
0 99

. .

. /
.

while using t-values we would have

 

s
t nw

n

Upper CI bound Lower CI bound

2 22 1 2, / /

11 76 0 59

2 2 09 2 22
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. .

. /
. .

Using the larger sw estimate of 0.99 the total evaluable sample size from (4.8) 
is 24 subjects. Alternatively we could use Table 4.1. The standardised differ-
ence is 1/0.99  1. From Table 4.1 the evaluable sample size is the same as the 
calculation.

If we had used 0.93 for the SD the evaluable sample size estimate from (4.8) 
would be a little lower at 22 subjects.

Note that for both these calculations (4.8) would give a sample size 1 less 
than (i.e. 23 and 21 subjects per arm).

The sample size calculation has given us the total evaluable sample size 
calculation. Suppose we only expected 85% of subjects to complete the trial; 
we thus require

With an SD of 99 the total sample would become 24/0.85  28.3 or 
29 subjects.

With an SD of 0.93 the total sample size would be 22/0.85  25.9 or 
26 subjects.

4.2.7 Worked Example 4.2

Suppose free tri-iodothyronine is the primary endpoint and all that we had 
for the calculation were the mean difference and the P-value. The wish is to 

TABLE 4.2

Summary of Results from a Cross-over Trial
 

Outcome Thyroxitine Placebo
Adjusted Difference 

(95% CI) P-value
 

Thyroid-stimulating 
hormone (mU/l)

0.66 (0.77) 1.77 (1.21) −1.17 (−1.76 to −0.59) 0.001

Free thyroxine ( mol/l) 17.95 (3.03) 13.68 (3.37) 4.75 (2.67 to 6.83) .001

Free tri-iodothyronine 

( mol/l)

3.72 (0.66) 3.50 (0.54) −0.23 (−0.11 to 0.56) 0.177

Cholesterol (mmol/l) 6.33 (1.17) 6.27 (1.25) 0.05 (−0.27 to 0.37) 0.739

Prolactin (mU/l) 250 (156) 307 (331) −37 (−189 to 116) 0.622
 

Note: CI  confidence interval.
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estimate the sample size to be able to detect a difference of 0.20 pmol/l with 
90% power for a two-sided significance level of 5%.

The P-value is 0.177; hence from Normal tables the Z-value for this is 1.38 
(note again with t-values this SD would be a little smaller):

 

s
x x

Z n
p

A B
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( )

/

.

. /
.

2

0 23

1 38 2 22
0 55

The sample size estimate is 162 patients total from (4.8).
If we had used a standardised difference we would have 0.20/0.55  0.36. 

Approximating this as 0.35 Table 4.1 gives a sample size estimate of 174 
patients in total.

4.2.8 Worked Example 4.3

As with Worked Example 4.2 often we have suboptimal data on which to 
base our sample sizes. Suppose it was possible to undertake a similar study 
to that of Yardley et al. (2004) described in Chapter 3 as a cross-over trial. The 
wish is to have the same primary endpoint of Dizziness Handicap Inventory 
assuming the same effect size of 5 to be of importance as for the parallel 
group trial and hence an estimate of the sample size to detect this difference 
(assuming a two-tailed Type I error of 5% and 90%).

Here of course we are designing a cross-over trial but only have data from 
a parallel group trial to assist us, a not uncommon problem.

We know from Chapter 3 that the variance formula for analysis of covari-
ance for various numbers of baseline measures is

 

Variance 2
2

1
1 1

p
p( )

 

(4.12)

where  is the Pearson correlation coefficient between observations—
assuming compound symmetry—and p is the number of baseline measures 
taken per individual. We also know that the within-subject variance is defined 
from (4.11).

In Chapter 3 we estimated the pooled variance 2 to be 447.01 and the vari-
ance estimate when accounting for baseline [i.e. (4.12)] to be 13.95  13.95  
194.60. From (4.12) we therefore have

 
194 6 447 01 1 2. . ( ).

Hence we have that the correlation between consecutive measures can be 
estimated as 0.75. The within-subject variance can be estimated as

 w
2 447 01 1 0 75 111 75. ( . ) . .

Using this as an estimate of the within-subject variance (within-subject SD of 
10.57) the sample size can be estimated as 96 patients in total from (4.8). The 
result from (4.9) also gives a sample size of 96 patients.
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4.3 Sensitivity Analysis about the Variance Used 
in the Sample Size Calculations

As with parallel group trials the sensitivity of the sample size estimate in a 
cross-over trial is relatively straightforward to investigate. The following result

 

s
df

sw
df

w
2

0 05
2

295( )
. ,  

(4.13)

can be used to assess the sensitivity of the sample size calculations to the 
assumptions about the variance.

4.3.1 Worked Example 4.4

The original trial from Pollock had 22 subjects total. Hence the variance was 
estimated with 20 degrees of freedom. For thyroid-stimulating hormone 0.99 
was used as an estimate of the within-subject standard for the sample size 
calculations. A highly plausible value for the variance could be taken as

 

sw
2

0 05 20
2

295
20

0 99
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10 85
0 98 1 81( ) .

.
. . .

. ,

Hence, a highly plausible value for the within-subject SD is 1.34. If the true 
variance was nearer to 1.34 then with 24 subjects total the study has 70% 
power. This is a decrease from 90% power. It would be recommended to have 
this calculation in the protocol and to communicate the sensitivity to the 
wider team, but the calculations could be considered to be reasonably robust 
to the assumption about the variance.

4.4 Calculations Taking Account of the Imprecision 
of the Variance Used in the Sample Size Calculations

To account for the imprecision of the variance used in the sample size cal-
culations the results for parallel group trials can be generalised to give the 
following formula
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s tinv m t
d

w n2 12
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2

2
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(4.14)

where n is the least integer value for (4.14) to hold, and m is the degrees of 
freedom about the estimate variance sw

2. We can rewrite (4.14) in terms of 
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power to obtain the following result:
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Replacing the t-statistic with a Z-statistic gives the following result:
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(4.16)

which allows us to have a direct estimate of the sample size and gives an 
initial value for iterations for (4.14).

By taking the ratio of (4.16) to (4.5) inflation factors can be calculated inde-
pendent of sw and d and dependent only on ,  and m. These inflation factors 
are the same as Table 3.10 in Chapter 3 and are not repeated here.

 
Key Message

The sample size calculations in the chapter use the within-subject 
variance w

2, and care should be given regarding whether a vari-
ance estimate obtained from a previous study for calculations is a 
within-subject variance or a variance of the difference d

2.
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5
Sample Size Calculations for Equivalence 
Clinical Trials with Normal Data

5.1 Introduction

The sample size calculations described so far in this book have concentrated 
on when we wish to determine whether one treatment is superior to another 
treatment. As discussed in Chapter 1, however, we do not always wish to 
show that two treatments are different. An objective of a trial can be to show 
that they are clinically the same.

In this chapter we discuss calculations for when a trial is being designed 
for which we wish to show two treatments are equivalent and the primary 
outcome is assumed to take a Normal form. Subsequent chapters discuss the 
related topics of non-inferiority and bioequivalence.

5.2 Parallel Group Trials

5.2.1 Sample Sizes Estimated Assuming the 
Population Variance to Be Known

5.2.1.1 General Case

Recall from Chapter 1 that the total Type II error (defined as   1  2) is 
derived from the following result:

 

Z
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Var S
Z1 1 1 11 2( ) ( )

and .  (5.1)

For equivalence trials for the general case when the expected true mean dif-
ference is not fixed to be zero the sample size cannot be derived directly. This 
is because the total Type II error is the sum of the Type II errors associated 
with each one-tailed test. As is the case with superiority trials Var(S) can be 
defined as
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where 2 is the population variance estimate and nB  rnA. From this and the 
fact that   1  2, the following can be used to derive the Type II error (and 
power)

1
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2 1
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((A B A A Bd rn
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d rn
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2

2 1
1
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  (5.3)

The sample size cannot be derived directly; instead we have to iterate until 
a sample size is reached that gives the required Type II error (and power). If 
the variance is to be considered unknown for the statistical analysis (5.4) can 
be used:
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 (5.4)

As with superiority trials discussed in Chapters 3 and 4 it is best to assume 
a non-central t-distribution to calculate the Type II error and power. Under 
the assumption of a non-central t-distribution the power can be calculated 
using the following (Owen, 1965; Diletti, Hauschke and Steinijans, 1991; 
Julious, 2004d):

1 1 21 1 2 2Pr ( , ( ) , ) Pr, ( )ob - ot t n rn r AA
bbt t n rn r AA

( , ( ) , ),, ( )1 1 2 11 2
  

  (5.5)

where 1 and 2 are non-centrality parameters defined respectively as
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For quick calculations, and to provide an initial value for the sample size in the 
iterations, an estimate of the sample size can be obtained from the following:
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This provides reasonable approximations for the case of A  B  0, espe-
cially when the mean difference approaches d. For very quick calcula-
tions, for 90% power and Type I error of 2.5%, the following formula can 
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be used
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or for r  1
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5.2.1.2 Special Case of No Treatment Difference

For the special case of no treatment difference, A  B  0, (5.3) can be rewrit-
ten to obtain a direct estimate of the sample size:
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Here we have 1  2, and as we have   1  2 we hence have   2 1 and 
/2  1  2. Thus for the special case of no treatment difference an equal 

proportion of the Type II error is assigned to each one-tailed test from which 
the power is derived in (5.3). It is because of this that (5.10) is derived, giving 
a direct estimate of the sample size.

When the variance is considered unknown for the statistical analysis, (5.10) 
can be written in terms of
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Equation (5.11) can be rewritten to give power in terms of the sample size:
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and, similar to (5.12), under the assumption of a non-central t-distribution, 
the power can be derived from
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where  is defined as
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For quick calculations, for 90% power and Type I error of 2.5%, the follow-
ing formula, similar to (5.8), can be used

 
n

r
d rA

13 12

2

( )
,  (5.15)

or, for r  1,

 
n

dA
26 2

2
.  (5.16)

The quick equations give reasonable estimates of the sample size, under-
estimating by one or two, and thus provide reasonable initial values for (5.5) 
and (5.13). It is worth noticing the difference between (5.15) and (5.16) com-
pared to (5.8) and (5.9). The difference in the coefficients 10.5 and 21 com-
pared to 13 and 26 has to do with the non-symmetric allocation of the Type 
II error if the population mean difference is non-zero.

Table 5.1 gives sample sizes for equivalence trials using (5.5) for different 
standardised equivalent limits (   d/ ).

TABLE 5.1

Sample Sizes (nA) for One Arm of a Parallel Group Equivalence Study 

with Equal Allocation (r  1) for Different Standardised Equivalence 

Limits (   d/ ) and True Mean Differences (as a percentage of the 

equivalence limit) for 90% Power and Type I Error Rate of 2.5%
 

Percentage Mean Difference

   0%     10%    15%     20% 25%
 

0.05 10,397 11,042 11,915 13,218 14,960

0.10 2,600 2,762 2,980 3,306 3,741

0.15 1,157 1,228 1,325 1,470 1,664

0.20 651 691 746 827 936

0.25 417 443 478 530 600

0.30 290 308 332 369 417

0.35 214 227 245 271 307

0.40 164 174 188 208 235

0.45 130 138 149 165 186

0.50 105 112 121 134 151

0.55 87 93 100 111 125

0.60 74 78 84 93 105

0.65 63 67 72 80 90

0.70 55 58 62 69 78

0.75 48 51 54 60 68

0.80 42 45 48 53 60

0.85 37 40 43 47 53

0.90 34 36 38 42 48

0.95 30 32 34 38 43

1.00 27 29 31 35 39
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5.2.1.3 Worked Example 5.1

Suppose we wish to design a pain trial to compare two different treatments 
for osteoarthritis pain relief; the objective is to demonstrate equivalence 
between two treatments. The largest clinically acceptable effect for which 
equivalence can be declared is a mean difference in visual analogue scale 
(VAS) assessed pain of 10 mm (d). There is to be equal allocation between 
groups. The true mean difference between the treatments is thought to be 
zero, and the expected standard deviation in the population in which the 
trial is to be undertaken is 100 mm ( ). The Types I and II errors are fixed at 
2.5% and 10%, respectively.

From (5.10), using the Normal approximation, the sample size is esti-
mated as 2,599.2 or 2,600 subjects per arm. If we compare this calculation 
with the sample size given in Table 5.1 calculated using the non-central t 
approach we can see the table also gives a sample size estimate of 2,600 
subjects per arm.

Taking 2,600 as the evaluable sample size required, we need a sufficient 
number of subjects to ensure that we have 2,600 for the analysis. For an 
equivalence trial the co-primary data set is the per protocol data set. Suppose 
we only expect 80% of subjects to be both in this data set and evaluable. 
Therefore we would need to recruit 2,600/0.80  3,250 subjects on each arm.

5.2.1.4 Worked Example 5.2

For the same worked example suppose that the true mean difference is 
thought to be 2 mm. This equates to 20% of the equivalence limits of 10 mm, 
that is, 0.2  2/10. We can see now that the sample size from Table 5.1 is 
increased to 3,306 subjects per arm.

It should be noted therefore that with equivalence trials our calculations 
are relatively sensitive to assumptions about the mean as well as the vari-
ance, which we now discuss.

5.2.2 Sensitivity Analysis about the Variance Used 
in the Sample Size Calculations

As with superiority trials described in Chapter 3 the sensitivity of the sample 
size estimate to the variance used in the calculations is relatively straight-
forward to investigate. For example, using the degrees of freedom for the 
variance we can estimate a high plausible value for the variance as an inves-
tigation into the sensitivity of the study to the assumptions about the vari-
ance used in the sample size calculations.

However, with equivalence trials we further have to investigate the sen-
sitivity of calculations about the true mean difference. If we have assumed 
no difference between the treatments when this difference is truly non-zero, 
then this will have an effect on the power of the study.
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5.2.2.1 Worked Example 5.3

Revisiting Worked Example 5.1, where we estimated the sample size to be 
2,600 patients per arm. Here we assumed there was no difference between 
the treatments. However, suppose the variance used in the calculations was 
estimated with 25 degrees of freedom, and we wished to investigate the sensi-
tivity of the study to the assumptions about both the mean and the variance.

Table 5.2 shows the sensitivity of the study’s original calculations for different 
mean differences. We can see for this study that if there truly is no mean dif-
ference but the true variance is higher than used in the calculations, then our 
power may be nearer to 57%. However, if our assumptions were out for both 
the mean and the variance, then the power may be more adversely affected.

5.2.3 Calculations Taking Account of the Imprecision of the 
Variances Used in the Sample Size Calculations

5.2.3.1 General Case

Extending the arguments from superiority trials discussed in Chapters 3 and 
4, to account for the degrees of freedom of the sample variance used in the 
calculations the following equation could be used to calculate the power:

           
1 1 1 1 2 2probt probt( , , ) ( , ,, ( )m t m tn rA 11 1 2 1, ( ) ) ,n rA  

(5.17)

where m is the degrees of freedom about the estimate variance s2, and 1 and 

1 are the absolute standardised equivalence limits, defined respectively as
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To calculate the sample size we would need to iterate to find the minimum 
value that would give the required power from (5.17).

TABLE 5.2

Worked Example of a 

Sensitivity Analysis for an 

Individual Equivalence Study
 

True 
Difference (%)

Power

 
0 0.57

5 0.57

10 0.56

15 0.54

20 0.51

25 0.47
 



Sample Size Calculations for Equivalence Clinical Trials with Normal Data 89

For non-zero treatment differences (i.e. for A  B  0) most of the Type II 
error would come from just one tail; hence the power could be estimated from
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which when written in terms of n becomes
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Replacing the t statistic with a Z-statistic, (5.20) can in turn be approximated 
from the following equation to give a direct estimate of the sample size:
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This direct estimate could be used to provide initial estimates of the sample 
size for (5.17).

5.2.3.2 Special Case of No Treatment Difference

For the special case of no treatment difference the power can be estimated 
from
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where  is defined as
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which when written in terms of nA becomes
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Replacing the t-statistic with a Z-statistic, (5.24) can in turn be approximated 
from the following equation to give a direct estimate of the sample size:
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Table 5.3 is produced for the special case of no mean difference between 
treatments. It gives the multiplication factors, compared to calculations 
assuming the population variance, for various degrees of freedom and Types 
I and II errors. Similar to superiority trials (5.25) converges to (5.12); however, 
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the multiplication factors can be used regardless of the original formula for 
sample size calculations.

5.3 Cross-over Trials

The methodologies and assumptions for an equivalence trial with a cross-
over design are the same as those for parallel group equivalence trials (for 
the methodologies) and superiority cross-over trials (for assumptions about 

TABLE 5.3

Multiplication Factors for Different Levels of One-Sided 

Significance, Type II Error and Degrees of Freedom
 

Significance Level ( )

m 0.010 0.025 0.050 0.100
 

5 0.05 2.649 2.509 2.385 2.238

0.10 2.167 2.068 1.980 1.875

0.15 1.929 1.850 1.780 1.696

0.20 1.776 1.711 1.652 1.581

0.50 1.367 1.337 1.311 1.278

10 0.05 1.611 1.562 1.520 1.470

0.10 1.463 1.425 1.392 1.353

0.15 1.382 1.351 1.323 1.290

0.20 1.328 1.301 1.276 1.248

0.50 1.166 1.153 1.141 1.127

25 0.05 1.208 1.192 1.178 1.162

0.10 1.163 1.150 1.139 1.125

0.15 1.137 1.126 1.116 1.105

0.20 1.119 1.109 1.101 1.091

0.50 1.062 1.058 1.053 1.058

50 0.05 1.099 1.091 1.085 1.077

0.10 1.078 1.072 1.067 1.060

0.15 1.066 1.061 1.056 1.051

0.20 1.058 1.053 1.049 1.044

0.50 1.031 1.028 1.026 1.024

75 0.05 1.065 1.060 1.056 1.051

0.10 1.052 1.047 1.044 1.040

0.15 1.044 1.040 1.037 1.033

0.20 1.038 1.035 1.032 1.029

0.50 1.020 1.019 1.017 1.016

100 0.05 1.048 1.044 1.041 1.038

0.10 1.038 1.035 1.033 1.030

0.15 1.033 1.030 1.028 1.025

0.20 1.029 1.026 1.024 1.022

0.50 1.015 1.014 1.013 1.012
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the parameters). This section therefore only briefly goes through the sample 
size calculations for an equivalence trial with a cross-over design.

5.3.1 Sample Size Estimated Assuming the 
Population Variance to Be Known

5.3.1.1 General Case

The Type II error (and power) can be estimated from
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where n here is the total sample size. If the variance is to be considered 
unknown for the statistical analysis, then (5.26) can be rewritten as

 

1
2

2

2 1 2

(( ) ) ((
,

A B

w
n

Ad n
t B

w
n

d n
t

) )
,,

2

2 1 22
1

  
  (5.27)

and under the assumption of a non-central t-distribution the power (Owen, 
1965; Diletti, Hauschke and Steinijans, 1991) for the sample size can be esti-
mated from
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where 1 and 2 are defined respectively as
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For quick calculations we can estimate the sample size from
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and for very quick calculations, for 90% power and Type I error of 2.5%, we 
can use the following:
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5.3.1.2 Special Case of No Treatment Difference

For the special case of A  B  0 a direct estimate of the sample size can be 
obtained from
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which, if the variance is to be considered unknown for the statistical analy-
sis, can be rewritten as
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Equation (5.33) can in turn be rewritten as
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which in turn, under the assumption of a non-central t-distribution, can also 
be rewritten as
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where  is defined as
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For quick calculations, for 90% power and Type I error of 2.5%, the follow-
ing result can be used:
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As with parallel group trials the quick equations give reasonable estimates 
of the sample size, underestimating the sample size by just one or two sub-
jects, and thus provide reasonable initial values for iterations. Table 5.4 
gives sample sizes using (5.17) for various standardised equivalence limits 
(   d/ ) and mean differences.

5.3.2 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

5.3.2.1 General Case

To account for the degrees of freedom of the within-subject sample variance 
the following equation could be used to calculate the power:
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where m is the degrees of freedom about the estimate of the variance sw
2 , and 

1 and 2 are non-centrally parameters defined respectively as
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To calculate the sample size we need to iterate to find the minimum value 
that would give the required power from (5.38).

For non-zero treatment differences (i.e. for A  B  0) the power could be 
estimated from
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which when written in terms of n becomes
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TABLE 5.4

Total Sample Sizes (n) for Cross-over Equivalence Study for 

Different Standardised Equivalence Limits (   d/ ) and 

True Mean Differences (as a percentage of the equivalence 

limit) for 90% Power and Type I Error Rate of 2.5%
 

Percentage Mean Difference

0% 10% 15% 20% 25%
 

0.05 10,398 11,043 11,916 13,219 14,961

0.10 2,601 2,763 2,981 3,307 3,742

0.15 1,158 1,229 1,326 1,471 1,665

0.20 652 692 747 828 937

0.25 418 444 479 531 601

0.30 291 309 333 370 418

0.35 215 228 246 272 308

0.40 165 175 189 209 236

0.45 131 139 150 166 187

0.50 106 113 122 135 152

0.55 88 94 101 112 126

0.60 75 79 85 94 106

0.65 64 68 73 81 91

0.70 56 59 63 70 79

0.75 49 52 55 61 69

0.80 43 46 49 54 61

0.85 39 41 44 48 54

0.90 35 37 39 43 49

0.95 31 33 36 39 44

1.00 29 30 32 36 40
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Replacing the t-statistic with a Z-statistic, (5.41) can in turn be approxi-
mated from
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This direct estimate could be used to provide initial estimates of the sample 
size for (5.38).

5.3.2.2 Special Case of No Treatment Difference

For the special case of no treatment difference the power can be estimated from
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which when written in terms of n becomes
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Replacing the t-statistic with a Z-statistic, then (5.45) can in turn be approx-
imated from
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Multiplication factors can be produced for the special case of no mean differ-
ence. For cross-over trials these would be the same as parallel group (given 
in Table 5.3) and are not repeated here.

Key Message

When designing an equivalence trial the sample size is sensi-
tive to assumptions about both the variance and the true mean 
difference.
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6
Sample Size Calculations for Non-inferiority 
Clinical Trials with Normal Data

6.1 Introduction

In Chapter 5 calculations were discussed for trials in which the objective is 
to demonstrate that two treatments are clinically the same. In this chapter 
calculations are described when the objective is to show one treatment is no 
worse than another, with one treatment an investigative, or new, treatment 
and the other a standard treatment.

The main difference between non-inferiority and equivalence trials is that 
with equivalence trials we wish to show that two treatments are the same 
such that we wish to prove the difference between treatments is wholly con-
tained within the interval (−d, d). However, with non-inferiority trials we 
are only concerned with one of the margins, for example −d, and demon-
strating that the difference between investigative and standard treatment is 
sufficiently far enough away from this to declare non-inferiority. Moreover, 
the further away the better, and if we are sufficiently far away also to be able 
to declare the investigative treatment is statistically superior (i.e. greater 
than zero), this is also a good result. Such trials, “as-good-as-or-better” tri-
als, were introduced in Chapter 1 and are revisited towards the end of this 
chapter.

6.2 Parallel Group Trials

6.2.1 Sample Size Estimated Assuming the Population Variance 
to Be Known

Recall from Chapter 1 we require
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and as with superiority and equivalence trials Var(S) can be defined as
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where 2 is the population variance estimate, and nB  rnA. When (6.2) is 
substituted into (6.1) (also replacing  with A  B), it gives a direct estimate 
of the sample size:
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Rewriting (6.2) to give the power for a given sample size we have the fol-
lowing result:
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The equivalent for the case when the variance is considered unknown for 
the analysis is
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As with the chapters on equivalence and superiority trials it is best to calculate 
the power under the assumption of a non-central t-distribution (Julious, 2004d):
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For quick calculations, for 90% power and Type I error of 2.5%, the follow-
ing formula can be used:
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For the case of r  1 (6.8) resolves to
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The quick equations give reasonable estimates of the sample size, although 
with slight underestimation. Table 6.1 gives sample sizes using (6.6) for vari-
ous standardised non-inferiority limits (   d/ ) and standardised mean dif-
ferences assuming equal allocation between groups.

One feature to highlight in Table 6.1 and Table 6.4 (described in the next 
section on cross-over trials) is the asymmetric effect on the sample size for 
different values of the true mean difference. In equivalence trials because 
we have two, usually symmetric, margins, when we move away from a zero 
mean difference in any direction the sample size is inflated. However, in 
non-inferiority trials the sample size is inflated only if the true mean dif-
ference moves towards the non-inferiority margin. If it is expected that the 
true mean difference is in favour of the comparator regimen (compared to 
control), then the sample size is significantly reduced.

6.2.2 Non-inferiority versus Superiority Trials

The asymmetric effect of the mean difference on the sample size is not triv-
ial. There is a perception that non-inferiority trials require greater sample 

TABLE 6.1

Sample Sizes (nA) for One Arm of a Parallel Group Non-inferiority Study with 

Equal Allocation for Different Standardised Non-inferiority Limits (   d/ ) and 

True Mean Differences (as a percentage of the non-inferiority limit) for 90% Power 

and Type I Error Rate of 2.5%
 

Percentage Mean Difference

−25% −20% −15% −10% −5% 0% 5% 10% 15% 20% 25%
 
0.05 5,381 5,839 6,358 6,949 7,626 8,407 9,316 10,379 11,636 13,136 14,945

0.10 1,346 1,461 1,590 1,738 1,908 2,103 2,330 2,596 2,910 3,285 3,737

0.15 599 650 708 773 849 935 1,036 1,155 1,294 1,461 1,662

0.20 338 366 399 436 478 527 584 650 729 822 935

0.25 217 235 256 279 306 338 374 417 467 527 599

0.30 151 164 178 194 213 235 260 290 325 366 417

0.35 111 121 131 143 157 173 192 213 239 270 306

0.40 86 93 101 110 121 133 147 164 183 207 235

0.45 68 74 80 87 96 105 116 130 145 164 186

0.50 55 60 65 71 78 86 95 105 118 133 151

0.55 46 50 54 59 64 71 78 87 98 110 125

0.60 39 42 46 50 54 60 66 74 82 93 105

0.65 33 36 39 43 47 51 57 63 70 79 90

0.70 29 31 34 37 40 44 49 54 61 68 78

0.75 25 27 30 32 35 39 43 48 53 60 68

0.80 23 24 26 29 31 34 38 42 47 53 60

0.85 20 22 23 26 28 31 34 37 42 47 53

0.90 18 20 21 23 25 27 30 34 37 42 48

0.95 16 18 19 21 23 25 27 30 34 38 43

1.00 15 16 17 19 21 23 25 27 31 34 39
 



98 Sample Sizes for Clinical Trials

sizes than superiority trials. This is due to the non-inferiority margin often 
being set at some fraction of an effect seen previously in a placebo-controlled 
superiority trial of the active control being used in the current trial. Hence, 
if ds is the effect seen in a retrospective placebo-controlled superiority trial 
and the non-inferiority margin d is set at d  0.5 ds, then the inference is that 
we would require four times the sample size compared to setting the trial 
as a superiority. The logic comes from the following result for a superiority 
sample size calculation:
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which for a one-tailed Type I error (where the Type I error is set at half that 
for a two-tailed test) becomes
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The equivalent result to (6.11) for non-inferiority studies, (6.3) with d  0 . S ds 
can be rewritten as
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which for the special case of A  B  0 becomes
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Therefore, on the face of it (6.13) estimates the sample size to be four times 
greater than for (6.10). However, the ds in question in (6.10) is for a trial pow-
ered to show an effect of active over placebo, while (6.13) is for a trial pow-
ered to show an effect of an active over an active control. This point is often 
lost. It is not uncommon when designing an active controlled trial for it to be 
designed as a superiority trial due to the misbelief that non-inferiority trials 
are unfeasibly large.

In fact if a study is being set up as a superiority study in effect it is a non-
inferiority study but with a margin equal to zero (i.e. d  0), that is,
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It could be argued, therefore, that it is harder to show superiority (lower 
bound greater than 0) than non-inferiority (lower bound greater than d). 
Furthermore, it could argued if we were confident that A  B, such that a 
superiority study could be designed, then the effect of having a margin −d in 
(6.14) and a non-inferiority study is to greatly reduce the sample size.



Sample Size Calculations for Non-inferiority Clinical Trials 99

This asymmetric effect of the mean difference on the sample size should 
be considered when designing non-inferiority trials as even only a small 
expected mean difference in favour of the comparator could have a marked 
effect on the sample size.

One thing to highlight with non-zero mean differences is that it is only the 
evaluable sample size that may be comparable between a non-inferiority and a 
superiority trial. A co-primary data set for analysis for a non-inferiority trial is 
the per protocol (PP) data set, so a greater number of subjects may need to be 
recruited to ensure a sufficient number of evaluable subjects for this data set.

The concepts of superiority and non-inferiority are of course interrelated. 
Indeed there may be instances when instead of designing a study to show 
an investigative treatment is no worse than an active control at the 2.5% level 
of significance we may wish to design a superiority study but at a level of 
statistical significance greater than the nominal two-sided 5% (one-sided 
2.5%) level. Such a study would give more assurance regarding the investi-
gative treatment being no worse than the active control. The Committee for 
Medicinal Products for Human Use (CHMP) (2005) commented on this:

It might be an acceptable approach, in extreme situations, to run a superi-

ority trial using a less stringent significance level than P  0.05, weighing 

up the increased risk of a false positive result against the risk of rejecting 

a drug with a valuable efficacy advantage. It might be more acceptable, 

and easier from an ethical perspective, to specify a level of confidence we 

require in the superiority of a drug, than to specify an extra number of 

deaths that is of no clinical importance.

The CHMP further expanded that

For example with a data-set where the lower bound of an 85% confi-

dence interval (by definition narrower than a 95% interval) touches zero, 

it might be that the 95% interval touches −5. If delta had been defined to 

be −5 then achieving non-inferiority in this example would correspond 

to having demonstrated superiority at the 15% level of significance.

Table 6.2 gives sample sizes using (6.6) for various standardised mean 
differences ( A  B/ ) and significance levels assuming equal allocation 
between groups assuming the non-inferiority margin is set at zero.

6.2.3 Worked Example 6.1

An investigator wishes to design a trial to compare two treatments for hyper-
tension; the objective is to demonstrate that one treatment (an investigative 
therapy) is non-inferior to another (a standard therapy). The largest clinically 
acceptable effect to be able to declare non-inferiority is a change in blood pres-
sure of 2.5 mmHg (d). The true mean difference between the treatments is 
thought to be zero with an expected standard deviation in the trial population 
of 10 mmHg ( ). There is to be equal allocation between groups (r  1), and the 



100 Sample Sizes for Clinical Trials

Type I and Type II errors are to be fixed at 2.5% and 10%, respectively. From 
Table 6.1 the sample size required is estimated to be 338 patients per arm.

Suppose, though, we believe that the investigative therapy is a little supe-
rior to the standard such that the true mean difference is thought to be 
0.5 mmHg. This would equate to 20% (0.2  0.5/2.5) of the non-inferiority 
limit. From Table 6.1 the sample size is reduced to 235 patients per arm.

Taking 235 as the sample size we now need to calculate the total sample 
size to ensure that we have this number of evaluable patients. Remember the 
PP data set is co-primary and suppose we only expect 75% of subjects to be 
in this data set and evaluable. The total sample size is therefore 235/0.75  
313.33 or 314 patients on each arm.

6.2.4 Sensitivity Analysis about the Mean Difference 
Used in the Sample Size Calculations

As with superiority and equivalence trials described in previous chapters 
we can estimate a plausibly large value for the population variance. As with 
equivalence trials, however, we also need to investigate the sensitivity of 

TABLE 6.2

Sample Sizes (nA) for One Arm of a Parallel Group Non-inferiority Study with 

Equal Allocation for Different Standardised True Mean Differences for 90% Power 

and Various One-Sided Type I Error Rates Assuming the Non-inferiority Margin Is 

Set at Zero
 

One-Sided Significance Levels

( A  B)/ 0.025 0.050 0.075 0.100 0.125 0.150
 

0.05 8,407 6,852 5,924 5,257 4,732 4,299

0.10 2,103 1,714 1,482 1,315 1,184 1,075

0.15 935 762 659 585 527 478

0.20 527 429 371 329 297 269

0.25 338 275 238 211 190 173

0.30 235 191 166 147 132 120

0.35 173 141 122 108 97 88

0.40 133 108 94 83 75 68

0.45 105 86 74 66 59 54

0.50 86 70 60 53 48 44

0.55 71 58 50 44 40 36

0.60 60 49 42 37 34 31

0.65 51 42 36 32 29 26

0.70 44 36 31 28 25 23

0.75 39 32 27 24 22 20

0.80 34 28 24 21 19 18

0.85 31 25 22 19 17 16

0.90 27 22 19 17 15 14

0.95 25 20 17 16 14 13

1.00 23 18 16 14 13 12
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calculations to the assumption about the true mean difference. If we assume 
there is no mean difference ( A  B  0) when the mean difference is truly 
non-zero, then this will have an effect on the power of the study. As dis-
cussed in this chapter the effect of the mean difference on the power is not 
symmetric, and if there is a difference in favour of the investigative treat-
ment there will be a positive effect on the power.

6.2.5 Worked Example 6.2

In Worked Example 6.1 we assumed that there was a small difference between 
treatments of 0.5 mmHg in favour of the investigative treatment. However, 
suppose that this is a little optimistic, and the true difference is actually zero 
( A  B  0); then, we only have 77% power in the study.

6.2.6 Calculations Taking Account of the Imprecision 
of the Variance Used in the Sample Size Calculations

To account for the imprecision of the sample variance used in the sample 
size calculations the results given in the chapter on superiority trials can be 
extended to give
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where m is the degrees of freedom about the estimate variance s2, and the 
sample size required is the least integer value for (6.15) to hold. We can 
rewrite (6.15) in terms of power to obtain the following result:

 
1 1 1 2Probt m t n rA

( , , ),, ( )  (6.16)

where  is defined as
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As (6.15) can only be solved by numerical iteration by replacing the t-statistic 
with a Z-statistic we have
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which allows us to have a direct estimate of the sample size and gives an 
initial value for iterations for (6.15).

Table 6.3 gives the multiplication factors, compared to assuming we have 
the population variance, for various degrees of freedom and Types I and 
II errors. It is produced for the special case of no mean difference between 
treatments, that is, A  B  0. These multiplication factors can be used to 
inflate a sample size to account for the imprecision in the variance.
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6.3 Cross-over Trials

6.3.1 Sample Size Estimated Assuming the Population Variance 
to Be Known

The equivalent sample size formula to (6.3) for cross-over trials is
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TABLE 6.3

Multiplication Factors for Different Levels of One-Sided 

Significance, Type II Error and Degrees of Freedom
 

Significance Level ( )

m 0.010 0.025 0.050 0.100
 
5 0.05 2.167 2.068 1.980 1.875

0.10 1.776 1.711 1.652 1.581

0.15 1.582 1.533 1.489 1.436

0.20 1.457 1.419 1.385 1.344

0.50 1.120 1.117 1.114 1.111

10 0.05 1.463 1.425 1.392 1.353

0.10 1.328 1.301 1.276 1.248

0.15 1.254 1.233 1.214 1.192

0.20 1.204 1.187 1.172 1.154

0.50 1.055 1.054 1.053 1.053

25 0.05 1.163 1.150 1.139 1.125

0.10 1.119 1.109 1.101 1.091

0.15 1.094 1.086 1.079 1.071

0.20 1.076 1.070 1.065 1.058

0.50 1.021 1.021 1.021 1.020

50 0.05 1.078 1.072 1.067 1.060

0.10 1.058 1.053 1.049 1.044

0.15 1.046 1.042 1.039 1.035

0.20 1.037 1.034 1.032 1.028

0.50 1.010 1.010 1.010 1.010

75 0.05 1.052 1.047 1.044 1.040

0.10 1.038 1.035 1.032 1.029

0.15 1.030 1.028 1.026 1.023

0.20 1.025 1.023 1.021 1.019

0.50 1.007 1.007 1.007 1.007

100 0.05 1.038 1.035 1.033 1.030

0.10 1.029 1.026 1.024 1.022

0.15 1.023 1.021 1.019 1.017

0.20 1.019 1.017 1.016 1.014

0.50 1.005 1.005 1.005 1.005
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where n here is the total sample size. When rewritten in terms of power, 
this becomes
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The equivalent formula replacing the Z-statistic with the t-statistic is
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As with parallel group designs it is preferable to calculate the Type II error 
(and power) under the assumption of a non-central t-distribution; thus (6.21) 
is rewritten as (Julious, 2004d)
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where  is defined as
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For quick calculations, for 90% power and Type I error of 2.5%, the follow-
ing formula can be utilised:
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As with parallel group estimation the quick equation slightly underestimates 
the sample size compared to (6.22). Table 6.4 gives sample sizes using (6.22) 
for various standardised non-inferiority limits (   d/ ) and standardised 
mean differences assuming equal allocation between groups.

Table 6.5 gives sample sizes using (6.22) for various standardised mean 
differences [( A  B)/ ] and significance levels assuming the non-inferiority 
margin is set at zero.

6.3.2 Calculations Taking Account of the Imprecision 
of the Variance Used in the Sample Size Calculations

To account for the imprecision of the variance used in the sample size calcu-
lations the results for parallel group trials can be generalised to
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where n is the least integer value for (6.25) to hold, and m is the degrees of free-
dom about the estimate variance sw

2. We can rewrite (6.25) in terms of power
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Replacing the t-statistic with a Z-statistic gives the following result:
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which allows us to have a direct estimate of the sample size and gives an 
initial value for (6.25).

As with parallel group trials multiplication factors can be calculated to allow 
us to account for the imprecision in the mean. As these factors depend only 
on the Type I error, Type II error and degrees of freedom they are the same for 
both parallel and cross-over trials. Please see Table 6.3 for more details.

TABLE 6.4

Total Sample Sizes (n) for a Cross-over Non-inferiority Study with Equal Allocation 

for Different Standardised Non-inferiority Limits (   d/ ) and True Mean 

Differences (as a percentage of the equivalence limit) for 90% Power and Type I 

Error Rate of 2.5%
 

Percentage Mean Difference

−25% −20% −15% −10% −5% 0% 5% 10% 15% 20%   25%
 

0.05 5,382 5,840 6,359 6,949 7,627 8,408 9,316 10,380 11,637 13,137 14,946

0.10 1,347 1,462 1,591 1,739 1,909 2,104 2,331 2,597 2,911 3,286 3,738

0.15 600 651 709 774 850 936 1,037 1,156 1,295 1,462 1,663

0.20 339 367 400 437 479 528 585 651 730 823 936

0.25 218 236 257 280 307 339 375 418 468 528 600

0.30 152 165 179 195 214 236 261 291 326 367 418

0.35 112 122 132 144 158 174 193 214 240 270 307

0.40 87 94 102 111 122 134 148 165 184 208 236

0.45 69 75 81 88 97 106 117 131 146 165 187

0.50 56 61 66 72 79 87 96 106 119 134 152

0.55 47 51 55 60 65 72 79 88 99 111 126

0.60 40 43 47 51 55 61 67 75 83 94 106

0.65 34 37 40 44 48 52 58 64 71 80 91

0.70 30 32 35 38 41 45 50 55 62 69 79

0.75 26 29 31 33 36 40 44 49 54 61 69

0.80 24 25 27 30 32 35 39 43 48 54 61

0.85 21 23 25 27 29 32 35 38 43 48 54

0.90 19 21 22 24 26 29 31 35 38 43 49

0.95 18 19 20 22 24 26 28 31 35 39 44

1.00 16 17 19 20 22 24 26 29 32 35 40
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6.4 As-Good-as-or-Better Trials

To calculate the sample size required for an as-good-as-or-better trial we 
should apply the methodologies described in Chapters 3 and 4 for superior-
ity trials as well as those in the current chapter.

For as-good-as-or-better trials therefore given that we are also investigat-
ing superiority, it may be appropriate to power for non-inferiority assuming 
a small difference between the two groups in favour of the investigative ther-
apy. As discussed in this chapter this assumption would have marked effect 
in the sample size calculation, but then the calculation would be very sensi-
tive to the assumptions made about the mean difference. The non-inferiority 
calculation in this context could be the main consideration in determining 
the sample size with maybe a statement in the sample size section regarding 
the expected power for superiority.

A further consideration in as-good-as-or-better trials is the choice of data 
set to have as primary, which adds a further complication. For a superiority 
trial the primary data set would be that based on intention to treat (ITT); for 
a non-inferiority trial the primary data set would be both the PP data set 

TABLE 6.5

Total Sample Sizes (nA) for a Cross-over Non-inferiority Study for Different 

Standardised True Mean Differences for 90% Power and Various Type I Error Rates 

of 2.5% Assuming the Non-inferiority Limit Is Set to Zero
 

Standardised 
  Difference

Significance Levels

0.025 0.050 0.075 0.100 0.125 0.150
 

0.05 8,408 6,853 5,925 5,257 4,732 4,299

0.10 2,104 1,715 1,482 1,315 1,184 1,076

0.15 936 763 660 585 527 479

0.20 528 430 372 330 297 270

0.25 339 276 238 212 190 173

0.30 236 192 166 147 133 120

0.35 174 142 122 109 98 89

0.40 134 109 94 83 75 68

0.45 106 86 75 66 60 54

0.50 87 70 61 54 48 44

0.55 72 59 51 45 40 37

0.60 61 49 43 38 34 31

0.65 52 42 37 32 29 26

0.70 45 37 32 28 25 23

0.75 40 32 28 25 22 20

0.80 35 29 25 22 20 18

0.85 32 26 22 20 18 16

0.90 28 23 20 18 16 14

0.95 26 21 18 16 14 13

1.00 24 19 16 15 13 12
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and the ITT (Committee for Proprietary Medicinal Products [CPMP], 2000). 
Hence, an appropriate sample size would need to be estimated to give an 
evaluable number of patients in both the PP and ITT data sets.

6.4.1 Worked Example 6.3

Extending Worked Example 6.1, suppose an investigator wished to design a 
parallel group trial in hypertensive patients with the objective of demonstrat-
ing that one treatment (an investigative therapy) is non-inferior to another 
(a standard therapy). The largest clinically acceptable effect to be able to 
declare non-inferiority is a change in blood pressure of 2.5 mmHg (d) and 
the standard deviation is taken as 10 mmHg. There is to be equal allocation 
between groups, and the Type I and Type II errors are to be fixed at 2.5% and 
10%, respectively.

Suppose it was truly believed that the investigative therapy was a little 
superior to the standard such that the true mean difference is thought to 
be 0.5 mmHg, so (from Table 6.1) the sample size is taken as 235 patients 
per arm.

With 235 as the evaluable sample size and only expecting 75% of subjects 
to be in the PP data set and evaluable, the total sample size is therefore 314 
subjects total to ensure 235 evaluable patients per arm.

Suppose, however, we expect 90% of subjects to be evaluable in the ITT 
population. The total sample size in this data set would be 314  0.90  282.6 
or 283 subjects. With this sample size for a difference of 0.5 mmHg the study 
would have 9.1% power for the test of superiority. Obviously if a greater dif-
ference between treatments was expected (or even is true) the greater the 
power will be for the study.

Key Messages

When designing a non-inferiority study a key assumption is 
one made about the true mean difference. Even a small differ-
ence in favour of the investigative treatment can substantially 
reduce the estimate of the sample size.
Non-inferiority studies can require fewer subjects than a supe-
riority study depending on the assumptions about the mean 
difference.



107

7
Sample Size Calculations 
for Bioequivalence Trials

7.1 Introduction

In Chapter 1 bioequivalence trials were first described. For such trials phar-
macokinetics are used as a surrogate for safety and efficacy such that equiva-
lence in the pharmacokinetics would be assumed to equate to equivalence in 
terms of safety and efficacy.

This chapter describes the sample size calculations for bioequivalence; in 
a reversal from previous chapters this chapter starts with cross-over trials, 
which are the most common type of bioequivalence trial.

7.2 Cross-over Trials

7.2.1 Sample Sizes Estimated Assuming the 
Population Variance to Be Known

7.2.1.1 General Case

The derivation of the sample size equations is similar to that for equivalence 
trials described in Chapter 6. For the general case for which the expected true 
mean difference is not fixed to be unity the sample size cannot be directly 
derived. We instead have to iterate until a sample size is reached that gives 
the required Type II error and power.

To calculate the power for the two one-sided test procedure at the 5% sig-
nificance level with bioequivalence acceptance limits of (0.80, 1.25) for any 
given value for the true ratio T/ R, the following formula can be used:
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where w is the within-subject variability on the log scale, and n is the total sam-
ple size. Replacing the Z-statistic with the t-statistic, (7.1) can be rewritten as
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As with superiority, equivalence and non-inferiority trials discussed ear-
lier in this book it is best to calculate the power using a non-central t-distribu-
tion of the power as outlined by Owen (1965), rewriting (7.2) to the following 
(Owen, 1965; Diletti, Hauschke and Steinijans, 1991; Julious, 2004d):
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where 1 and 2 are non-centrality parameters defined respectively as
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An estimate of the sample size for T/ R greater than unity can be obtained 
from
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which can be used to provide an initial value for the iterations. This equation 
provides reasonable approximations for T/ R  1, especially when the mean 
ratio becomes large relative to (0.80 to 1.25) as in such circumstances most of 
the Type II error comes from one of the two one-sided tests. For quick calcu-
lations, for 90% power and a Type I error of 5%, the following can be used:
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Obviously, for true ratios less than unity log(1.25) should be replaced by 
log(0.80).

7.2.1.2 Special Case of the Mean Ratio Equalling Unity

For the special case when the true mean difference is expected to be unity 
the sample size can be directly derived from the following formula:
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By replacing the Z-statistic with the t-statistic (7.7) can be rewritten to give 
the sample size as

 

n
Z tw n2

1 25

2
1 2 1 2

2

2

( )

(log( . ))
.

/ ,  (7.8)

In turn (7.8) can be rewritten as
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Estimating the power from a non-central t-distribution, (7.9) can be rewrit-
ten as
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where  is the non-centrality parameter defined as
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Equation (7.7) can be used to obtain initial estimates of the sample size to 
use in (7.10). For quick calculations for 90% power, 5% Type I error rate and 
20% acceptance criteria we could use

 
n w433 2 .

 
(7.12)

Table 7.1 gives sample size estimates using (7.3) for different within subject 
coefficients of variability (CVs), mean ratios and acceptance criteria 10% (0.90 
to 1.11), 15% (0.85 to 1.18), 20% (0.80 to 1.25), and so on for a Type I error rate 
of 5% and 90% power. The simpler equations provide good estimates of the 
total sample size, underestimating the sample size by one or two, and hence 
good initial values for iteration.

7.2.2 Replicate Designs

For compounds with high variability the standard AB/BA can require a rela-
tively large sample size, especially if the mean ratio is not expected to be 
unity. Among the designs that can partially overcome this problem are rep-
licate cross-over designs. By adding an extra arm to the study such that the 
sequences are ABB/BAA we can reduce the sample size by 25% compared 
to a standard AB/BA design; an ABBA/BAAB design can reduce the sample 
size by 50% (Liu, 1995). This option may not be practical for certain com-
pounds, for example, those with a long half-life, but it is a possible solution 
for compounds with high pharmacokinetic variability.

Another type of replicate design is a two-period replicate design AA/AB/
BA/BB, also known as Balaam’s design (Jones and Kenward, 2003). This 
design allows for an intra-subject estimate of variability for a given com-
pound without increasing the number of periods beyond two. To consider 
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TABLE 7.1

Total Sample Sizes (n) for Bioequivalence Cross-over Study 

for Different within Subject CVs, Levels of Bioequivalence 

and True Mean Ratios for 90% Power and Type I Error of 5%
 

Levels of Bioequivalence

CV (%) Ratio 10% 15% 20% 25% 30%
 

10 0.80 43 12

0.85 48 13 7

0.90 54 14 8 5

0.95 60 16 8 6 5

1.00 21 10 7 5 5

1.05 55 15 8 6 5

1.10 40 13 7 5

1.15 26 10 6

1.20 104 17 8

15 0.80 93 23

0.85 106 26 12

0.90 119 29 14 8

0.95 132 33 15 9 7

1.00 45 20 12 8 6

1.05 121 31 15 9 7

1.10 86 25 12 8

1.15 57 19 10

1.20 231 36 15

20 0.80 163 40

0.85 185 45 20

0.90 207 50 22 13

0.95 232 56 25 14 10

1.00 78 34 19 12 9

1.05 212 54 24 14 10

1.10 151 43 20 12

1.15 99 33 16

1.20 405 62 24

25 0.80 251 60

0.85 284 68 30

0.90 320 77 33 18

0.95 357 86 37 21 14

1.00 120 52 28 18 12

1.05 326 82 36 21 14

1.10 232 65 30 17

1.15 151 49 24

1.20 625 95 36
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the effect such a design has on the sample size we must consider the deriva-
tion of the total variance 2  b

2  w
2, where w

2 is the within-subject com-
ponent of variation and b

2 is the between-subject component of variation. 
Both these variance components can be estimated from previous cross-over 

TABLE 7.1 (CONTINUED)

Total Sample Sizes (n) for Bioequivalence Cross-over Study 

for Different within Subject CVs, Levels of Bioequivalence 

and True Mean Ratios for 90% Power and Type I Error of 5%
 

Levels of Bioequivalence

CV (%) Ratio     10%     15%     20%     25%  30%
 

30 0.80 356 85

0.85 403 96 41

0.90 454 108 46 25

0.95 507 121 52 29 18

1.00 170 73 39 25 17
1.05 463 116 51 28 18

1.10 329 92 42 24

1.15 214 69 33

1.20 888 135 50

35 0.80 477 113

0.85 540 128 54

0.90 608 145 61 33

0.95 679 162 69 38 24

1.00 227 97 52 32 22

1.05 620 155 67 37 24

1.10 440 123 55 31

1.15 287 92 44

1.20 1,190 180 67

40 0.80 612 144

0.85 694 164 69

0.90 780 185 78 42

0.95 871 207 88 48 30

1.00 291 124 66 41 27

1.05 796 198 86 47 30

1.10 565 157 71 39

1.15 367 118 56

1.20 1,527 231 86

45 0.80 760 179

0.85 861 203 86

0.90 969 230 97 52

0.95 1082 257 109 60 37

1.00 361 153 82 50 33

1.05 989 246 106 59 37

1.10 701 195 87 48

1.15 456 146 69

1.20 1,897 286 106
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trials with the test and reference compounds. Now suppose b
2  k w

2; it can 
be shown, assuming an equal allocation to each sequence, that the sample 
size required for a two-period replicate design can be derived by multiplying 
the sample size for standard AB/BA design as follows (Julious, 2004d):
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Table 7.2 gives inflation factors for different values of k. It is evident from 
both Table 7.2 and (7.1) that a two-period replicate design will always require 
more subjects than a standard AB/BA requiring the same sample size only 
for k  0. However, no matter how much larger k becomes it will only require 
twice as many subjects at most. This is because as k becomes large virtually 
all the information, in the comparison of the mean ratio, comes from the AB/
BA sequences, and with twice as many subjects there will be as many people 
in these sequences as in a standard AB/BA design.

7.2.3 Worked Example 7.1

A bioequivalence study is to be planned for a new formulation for a com-
pound being developed. Standard Food and Drug Administration (FDA) 
bioequivalence criteria are to be used such that bioequivalence will be 
declared if the 90% confidence interval is wholly contained within (0.80, 1.25). 
Two previous studies have been conducted with the compound; the variabil-
ity data are summarised in Table 7.3. For the planned study bioequivalence 

TABLE 7.2

Multiplication Factors for 

Different Values of k for a 

Two-Period Replicate Cross-

over Design
 

k
2 1

1
k

k
 

  2 1.67

  4 1.80

  6 1.86

  8 1.89

10 1.91
 

TABLE 7.3

CVs (degrees of freedom) for 

AUC and Cmax
 
AUC Cmax
 

Study 1 33% (13) 20% (13)

Study 2 24% (15) 23% (15)
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will be declared if the area under the concentration curve (AUC) and Cmax are 
equivalent for the two formulations.

The corresponding within-subjects standard deviation (SD) of the logs for 

the AUC are (from w wCVlog( )2 1 ) 0.32 and 0.24. Hence, an overall esti-
mate of the SD can be obtained from
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Likewise for the Cmax an overall estimate of the SD is 0.22.
The AUC has the larger of the two variances, so the sample size will be 

estimated from this. In terms of CVw we have
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Using AUC, and taking the CV to be 30%, Table 7.1 gives the sample size to 
be 39 subjects. As the trial will be an AB/BA cross this would equate to 20 
subjects per sequence (or 40 total).

With a cross-over trial only subjects who complete will contribute to the 
analysis, and it is anticipated that 15% of subjects will not complete the trial. 
Hence the total sample size required to ensure completion by 40 subjects is 
40/0.85  47.1  48 subjects total.

Suppose an ABBA/BAAB replicate design is proposed as a way to reduce 
the sample size. Now the evaluable sample size would become half of 40, that 
is, 20 subjects.

7.2.4 Sensitivity Analysis about the Variance Used 
in the Sample Size Calculations

Bioequivalence and other early phase trials, such as food effect, drug interac-
tion studies, and the like, maybe be particularly sensitive to the assumptions 
in the design of the trial as often by definition these trials may be designed 
early in clinical development with very little information on the variance to 
power the current trial.

As with other types of trial described in this book a plausibly large value 
for the population variance can be used to assess the sensitivity of the study 
to the assumptions in the calculations. For bioequivalence-type studies these 
calculations are particularly recommended.

7.2.5 Worked Example 7.2

For AUC in the worked example a highly plausible value for the variance 
could be estimated from
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From this the CVw is estimated to be 37% (from the 95th percentile for this 
variance). Likewise a highly plausible value for the Cmax variance could be 
estimated to be 35%. With these highly plausible values the variance (7.3) 
could be used to assess the loss of power if the true variance was nearer 
to these plausibly high variances (Table 7.4). This study up front therefore 
seems quite robust to the assumptions made about the variance.

7.2.6 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

7.2.6.1 General Case

Extending the arguments for equivalence trials given in previous chapters 
the sample size for a bioequivalence study, taking into account the degrees of 
freedom about the sample variance study, can be derived from
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where sw
2 is a sample estimate of the within-subject population variance, and 

m is the degrees of freedom for this variance. Replacing the t-statistic with 
the Z-statistic, (7.14) becomes
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A direct estimate of the sample size can be obtained if the expected true 
mean ratio is expected to be large, T/ R  1.05. Hence, the following quick 
formula can be used to obtain direct initial estimates of the sample size for 
the general case of T/ R  1:

 

n
s tinv m Zw2 1

1 25

2
1

2[ ( , , )]

[log( . ) log( TT R/ )]
.

2
 (7.16)

TABLE 7.4

Sensitivity Analysis for the Planned Study (%)
 

CVw 95th Power for 95th percentile
 

AUC 29 37 71

Cmax 27 35 76
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7.2.6.2 Special Case of the Mean Ratio Equalling Unity

For the special case of T/ R (7.14) can be rewritten as
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which when replacing the t-statistic with the Z-statistic becomes
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TABLE 7.5

Multiplication Factors for Different Levels of One-Sided 

Significance, Type II Error and Degrees of Freedom
 

Significance Level ( )

   m 0.010 0.025 0.050 0.100
 

    5 0.05 2.649 2.509 2.385 2.238

0.10 2.167 2.068 1.980 1.875

0.15 1.929 1.850 1.780 1.696

0.20 1.776 1.711 1.652 1.581

0.50 1.367 1.337 1.311 1.278

  10 0.05 1.611 1.562 1.520 1.470

0.10 1.463 1.425 1.392 1.353

0.15 1.382 1.351 1.323 1.290

0.20 1.328 1.301 1.276 1.248

0.50 1.166 1.153 1.141 1.127

  25 0.05 1.208 1.192 1.178 1.162

0.10 1.163 1.150 1.139 1.125

0.15 1.137 1.126 1.116 1.105

0.20 1.119 1.109 1.101 1.091

0.50 1.062 1.058 1.053 1.058

  50 0.05 1.099 1.091 1.085 1.077

0.10 1.078 1.072 1.067 1.060

0.15 1.066 1.061 1.056 1.051

0.20 1.058 1.053 1.049 1.044

0.50 1.031 1.028 1.026 1.024

  75 0.05 1.065 1.060 1.056 1.051

0.10 1.052 1.047 1.044 1.040

0.15 1.044 1.040 1.037 1.033

0.20 1.038 1.035 1.032 1.029

0.50 1.020 1.019 1.017 1.016

100 0.05 1.048 1.044 1.041 1.038

0.10 1.038 1.035 1.033 1.030

0.15 1.033 1.030 1.028 1.025

0.20 1.029 1.026 1.024 1.022

0.50 1.015 1.014 1.013 1.012
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Hence, a direct estimate of the sample size can be obtained from
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Table 7.5 gives the multiplication factors, compared to assuming we have the 
population variance, for various degrees of freedom and Type I and II errors 
assuming a mean ratio of unity using (7.19) and (7.7).

7.3 Parallel Group Studies

Although cross-over trials are the ‘norm’ for the assessment of bioequiva-
lence sometimes, particularly with very long half-life compounds, these 
designs are not practical. This section briefly describes the methodology for 
sample size calculation for parallel group bioequivalence trials.

7.3.1 Sample Size Estimated Assuming the 
Population Variance to Be Known

7.3.1.1 General Case

The power for a bioequivalence trial with acceptance limits of (0.80, 1.25) for 
given values of the any true ratio is given by
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where  is the between-subject variability on the log scale, r is the allocation 
ratio, and nT is the sample size in the test group—assuming here nT  nR. 
Replacing the Z-statistic with a t-statistic, (7.20) can be rewritten as
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and under the assumption of a non-central t-distribution the power is esti-
mated from
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where 1 and 2 are non-centrality parameters defined respectively as
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As with a cross-over trial a direct estimate of the sample size for a mean 
ratio greater than unity can be obtained from

 

n
r Z Z

rT
T R

( ) ( )

(log( / ) log( .

1

1 25

2
1 1

2

)))
,

2
 (7.23)

and for quick calculations we could use
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If the mean ratio is expected to be less than unity, then replace log(1.25) with 
log(0.80) in (7.23) and (7.24).

7.3.1.2 Special Case of the Ratio Equalling Unity

When the mean ratio is expected to be unity the sample size can be derived 
directly from
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Replacing the Z-statistic with the t-statistic, (7.25) can be rewritten as
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Equation (7.26) can in turn be rewritten as
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and under the assumption of a non-central t-distribution the power can be 
derived from
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where  is the non-centrality parameter defined as
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Equation (7.25) can be used for initial estimates of the sample size to use 
in (7.28). For quick calculations of the sample size for 90% power, 5% Type I 
error rate and 20% we could use
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As with cross-over trials the simpler equations provide good estimates for 
initial calculations. Table 7.6 gives sample size estimates using (7.22) for dif-
ferent CVs, mean ratios and acceptance criteria 10% (0.90 to 1.11), 15% (0.85 to 
1.18), 20% (0.80 to 1.25), and so on for a Type I error rate of 5%, 90% power and 
an allocation ratio of one. 

7.3.2 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

7.3.2.1 General Case

For a parallel group bioequivalence study the sample size can be derived from
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where s2 is a sample estimate of the population variance, and m is the degrees 
of freedom for this variance. Replacing the t-statistic with the Z-statistic, 
(7.31) becomes
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TABLE 7.6

Sample Sizes for One Arm of a Bioequivalence Parallel Group 

Study for Different CVs, Levels of Bioequivalence and True 

Mean Ratios for 90% Power and a Type I Error Rate of 5%
 

Levels of Bioequivalence

CV (%) Ratio 10% 15% 20% 25% 30%
 

30 0.80 356 84

0.85 403 95 40

0.90 453 108 46 25

0.95 506 121 51 28 18

1.00 169 72 39 24 16

1.05 462 115 50 28 17

1.10 328 92 41 23

1.15 213 69 33

1.20 887 134 50

35 0.80 476 112

0.85 540 128 54

0.90 607 144 61 33

0.95 678 161 69 37 23

1.00 226 96 51 31 21

1.05 620 154 67 37 23

1.10 439 122 55 30

1.15 286 92 43

1.20 1,189 179 66

40 0.80 611 144

0.85 693 163 69

0.90 779 184 78 41

0.95 871 207 88 48 30

1.00 291 123 66 40 26

1.05 796 198 85 47 29

1.10 564 157 70 38

1.15 367 117 55

1.20 1,527 230 85

45 0.80 759 178

0.85 861 203 85

0.90 968 229 96 51

0.95 1,082 257 109 59 36

1.00 361 152 81 49 33

1.05 988 245 106 58 36

1.10 700 194 87 47

1.15 455 146 68

1.20 1,896 286 105

(Continued)
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TABLE 7.6 (CONTINUED)

Sample Sizes for One Arm of a Bioequivalence Parallel Group 

Study for Different CVs, Levels of Bioequivalence and True 

Mean Ratios for 90% Power and a Type I Error Rate of 5%
 

Levels of Bioequivalence

CV (%) Ratio 10% 15% 20% 25%     30%
 

50 0.80 919 216

0.85 1,041 245 103

0.90 1,171 277 116 62

0.95 1,309 310 131 71 44

1.00 436 184 98 60 39

1.05 1,195 297 128 70 43

1.10 847 235 104 57

1.15 551 176 82

1.20 2,295 345 127

55 0.80 1,088 255

0.85 1,233 290 121

0.90 1,387 327 137 73

0.95 1,550 367 155 84 52

1.00 516 218 116 70 46

1.05 1,416 351 151 82 51

1.10 1,003 278 124 68

1.15 652 208 97

1.20 2,718 409 150

60 0.80 1,266 297

0.85 1,434 337 141

0.90 1,613 381 160 85

0.95 1,803 427 180 97 60

1.00 601 253 135 82 54

1.05 1,647 408 176 96 59

1.10 1,167 323 144 78

1.15 759 242 113

1.20 3,162 476 174

65 0.80 1,450 340

0.85 1,643 386 161

0.90 1,849 436 183 97

0.95 2,066 489 207 111 68

1.00 688 290 154 93 61

1.05 1,887 468 201 109 68

1.10 1,337 371 164 90

1.15 869 277 129

1.20 3,623 545 200
 



Sample Size Calculations for Bioequivalence Trials 121

For T/ R  a direct estimate of the sample size to start iterations can 
be obtained from
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7.3.2.2 Special Case of the Mean Ratio Equalling Unity

For the special case of T = R (7.31) can be rewritten as
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which when replacing the t-statistic with the Z-statistic becomes
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Hence, a direct estimate of the sample size can be obtained from
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Table 7.5 (for cross-over trials) can be used for multiplication factors as 
these depend only on degrees of freedom and Type I and II errors.

Key Messages

For studies in which the variance is anticipated to be high then 
a replicate design may be an option to reduce the sample size.
Bioequivalence trials may be particularly sensitive to assump-
tions about the estimates used in sample size calculations.
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8
Sample Size Calculations for Precision-Based 
Clinical Trials with Normal Data

8.1 Introduction

So far the book has concentrated on trials in which we are powering a study 
to investigate a null hypothesis. As discussed in Chapter 1, however, often 
we may be designing a trial in which the objective is not to formally investi-
gate a hypothesis—and hence whether a treatment difference truly exists—
but to estimate plausible differences with a view to design a definitive study 
afterwards (Julious and Patterson, 2004).

All trials however have to have some form of sample size justification pro-
vided. For an exploratory trial what is proposed is to estimate a sample size 
that provides a given level of precision for any estimates. Hence, we are not 
powering in the traditional fashion for a (in truth unknown) desirable and 
prespecified difference of interest.

Simply when analysing a trial you have a point estimate of effect and a 
confidence interval. If you take a half-width (w) of the confidence interval, 
then this could be taken as a measure of precision for the trial. This measure 
of precision could in turn be used to design a clinical trial.

For precision-based studies, rather than testing a formal hypothesis, an 
estimation approach through the provision of confidence intervals around a 
possible effect may be more appropriate. Here, therefore, the concentration 
will not be on assessing statistical significance but on estimation. It is impor-
tant however that if the sample size is based on estimation calculations, then 
the protocol should clearly state this as the study’s objective and as the basis 
for the sample size of the study.

The precision-based approach may also be useful for secondary or ter-
tiary objectives. An example is when a trial is designed to test an over-
all effect but there is also an interest to investigate effects in possible 
subgroups. Here, instead, the study would have little power in the sub-
groups, so we can calculate what precision we may have when estimating 
possible effects.
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8.2 Parallel Group Trials

8.2.1 Sample Size Estimated Assuming 
the Population Variance to Be Known

As discussed in Chapter 1 a (1 ) 100% confidence interval for f( ) has half-
width
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(8.1)

so defining Var(S) as per the equation
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where 2 is the population variance estimate, and nB = rnA. We can solve (8.1) 
to give (Julious and Patterson, 2004)
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If the population variance is assumed unknown in the statistical analysis, 
(8.2) can be rewritten as (Julious and Patterson, 2004)
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Result (8.3) can be solved iteratively to find a value of nA for which the left-
hand side of the equation is greater than the right. An alternative equation 
to solve for nA would be
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Actually, (8.4) holds; if we were to rewrite it in terms of nA, we would ini-
tially have
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The result (8.6) holds as Z0.5 = 0, and hence it becomes (8.3). The result (8.6) 
is in fact the same as the results for superiority trials but with the Type II 
error set at 0.5—although obviously as precision trials are not powered they 
cannot have any Type II error. The practical application of this result is given 
later in the section on sample sizes for which the population variance is 
assumed unknown for sample size calculations.

To allow for the Normal approximation (8.2) can have a correction factor added 
to assist in initial calculations (Guenther, 1981; Julious and Patterson, 2004)
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while the following quick formula can be used assuming we wish to have a 
95% confidence interval for the precision estimates:
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or for r = 1:
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Table 8.1 gives sample sizes using (8.3) for various standardised widths 
(  = w/ ). The simpler equations slightly underestimate the sample size.

If we compare Table 8.1 to the sample sizes using (8.1) for these calcula-
tions, then the sample size estimates are about two smaller when using (8.1) 
over Table 8.1. The correction factor of Z1 2

2 4/ /  given in (8.7) could be added 
to account for part of this underestimation.

8.2.1.1 Worked Example 8.1: Standard Results

A parallel two-arm precision-based study is being designed. The primary 
endpoint is systolic blood pressure, and the standard deviation (SD) is 
assumed to be 10 mmHg. Suppose the precision we required for a half-width 
of a 95% confidence interval is 2.5 mmHg; then the sample size would be 
estimated as 122.9 or 123 patients per arm if the sample size had been esti-
mated using the Normal approximation approach from (8.2).

8.2.1.2 Worked Example 8.2: Using Results from Superiority Trials

Remember the Normal approximation sample size result from Chapter 3
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Imagine we did calculations using the superiority sample size formula from 
Chapter 3 but using 50% power. Now we have Z1−  = 0, and hence we would 
have (8.2). Thus the sample size would remain the same.

8.2.1.3 Worked Example 8.3: Sample Size Is Based on Feasibility

A trial is being designed in which the sample size of 12 per group is based 
on feasibility and is fixed a priori. However, you have a previous estimate 
10 for the SD. Now, with n fixed we could calculate the precision that could 
be anticipated if a 95% confidence interval is to be used. Hence, the width 
would be

 
w t s nn1 2 2 1

2 22 2 07387 2 10 12 8 47/ , ( ) / . / .  mmHg.
 

An alternative calculation is to say what difference could be detected for a 
requisite power and significance level. For the same trial with 90% power and 

TABLE 8.1

Sample Sizes for One Group, nA (nB = rnA), in a Parallel 

Group Study for Different Standardised Widths 

(  = w/ ) and Allocation Ratios with 95% Confidence 

Intervals for the Precision Estimates
 

Allocation Ratios (r)

1 2 3 4
 

0.05 3,075 2,306 2,050 1,922

0.10 770 578 513 481

0.15 343 257 229 214

0.20 194 145 129 121

0.25 125 94 83 78

0.30 87 65 58 54

0.35 64 48 43 40

0.40 50 37 33 31

0.45 40 30 26 25

0.50 32 24 22 20

0.55 27 20 18 17

0.60 23 17 15 14

0.65 20 15 13 12

0.70 17 13 12 11

0.75 15 12 10 10

0.80 14 10 9 9

0.85 12 9 8 8

0.90 11 8 7 7

0.95 10 8 7 6

1.00 9 7 6 6
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a two-sided significance level of 5% the difference, rewriting (8.10), would be 
estimated from
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Hence, a difference that could be detected with 90% power is 13.2 mmHg.

8.2.2 Sensitivity Analysis about the Variance Used 
in the Sample Size Calculations

Precision-based studies are usually undertaken early in the development of 
a compound when, by definition, there is little variability information avail-
able. Hence, a sensitivity analysis of the study may be quite important.

When undertaking a sensitivity analysis in a precision-based study designed 
to estimate effects to a given precision, however, it is not the power we inves-
tigate against a highly plausible value for the variance but the precision itself. 
Hence, from (8.2) or (8.3) we estimate the required sample size and then use 
the same results to quantify the precision the study will have supposing the 
variance is nearer to a larger plausible variance for the same sample size.

8.2.3 Worked Example 8.4

Revisiting Worked Example 8.3, the sample size was estimated to be 123 
patients using the Normal approximation method based on a width of 2.5 
and an SD of 10. Now suppose the variance used in the calculations was esti-
mated with 10 degrees of freedom from Chapter 3, a highly plausible value 
for the variance 0 05 10

2 3 94. , . :

 

sp( )
.

. .95
10

3 94
10 15 932

Hence, for this highly plausible value for the variance the precision for the 
trial would be 3.98—about 60% worse than the width on which the sample 
size calculations were based.

8.2.4 Accounting for the Imprecision of the Variance in the Future Trial

When undertaking conventional powered trials we are in effect accounting 
for the imprecision in the future trials’ variance (and mean). This is because 
we are supposing we have the population responses for the sample size cal-
culation and that we will be undertaking a trial that will give estimates of 
the population response. However, in these future trials there will be ran-
dom variability in our estimates from trial to trial such that even if there 
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truly is a difference between treatment groups we still have a chance of not 
observing a statistically significant effect. This is when we have the concepts 
of Type II error and power.

In the context of precision-based trials with (8.2) or (8.3) we have a good 
chance of not achieving the desired precision because in a large proportion 
of trials the observed study variance will be greater than the population 
variance simply due to random sampling. To overcome this problem we can 
estimate the sample size from the following result (Grieve, 1989, 1990, 1991):
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where probchi n rA( , ( ) )1 2  is a cumulative density distribution (using the 
same notation as SAS) of a 2 distribution on nA (r + 1)  2 degrees of freedom. 
To estimate a sample size we have to iterate until a required level of prob-
ability is reached.

The probability here is the probability of the confidence interval having the 
required precision for the variance estimated in the planned trial for a given 
sample size. This result accounts for the fact that, at random, the sample vari-
ance in the study may be bigger (or smaller) than the population variance. 
An important point to emphasise is that this probability is not a power.

Table 8.2 gives sample sizes from (8.12) for given probabilities and vari-
ous standardised widths (  = w/ ). From visual inspection of this table and 
Table 8.1 [estimated from (8.2)] it is clear that for a probability of 0.5 (8.12) 
gives the same results as (8.2), allowing for a little rounding error. Also 
from inspection, it seems that to ensure a greater probability of having the 
required precision it does not require a great increase in the required sample 
size.

8.2.4.1 Worked Example 8.5: Accounting for the Imprecision 
in the Variance in the Future Trial

In Worked Example 8.1 for a standardised precision of 0.25 the sample size 
required was estimated as 125 using Table 8.1 and (8.3). From Table 8.2 we 
can see that if we wish just to be 50% certain of having the requisite precision 
we would also need 125 patients per arm. However, if we wish to have a bit 
more certainty, say 90%, the sample size would increase by about 11% to 139 
patients per arm.

8.2.5 Calculations Taking Account of the Imprecision 
of the Variance Used in the Sample Size Calculations

To account for the imprecision of the variance used in the sample size calcu-
lations for parallel group precision-based trials, the results from superiority 
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trials given in Chapter 3 can be generalised to give

 
n

r s tinv m t
A

n rA
( ) [ ( . , , )]/ , ( )1 0 52

1 2 1 2
2

rrd2
,  (8.13)

where nA is the least integer value for (8.13) to hold, and m is the degrees of 
freedom about the estimate variance s2. This equation can in turn be rewrit-
ten as
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Replacing the t-statistic with a Z-statistic gives
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TABLE 8.2

Sample Sizes for One Group, nA (nB = nA), in a Parallel Group 

Study for Different Standardised Widths and Probabilities 

for 95% Confidence Intervals for the Precision Estimates
 

Probabilities

0.50 0.80 0.90 0.95
 

0.05 3,075 3,121 3,145 3,165

0.10 770 793 805 815

0.15 343 358 366 373

0.20 193 205 211 216

0.25 124 134 138 142

0.30 87 94 98 102

0.35 64 71 74 77

0.40 49 55 58 60

0.45 39 44 47 49

0.50 32 37 39 41

0.55 27 31 33 35

0.60 23 27 28 30

0.65 20 23 25 26

0.70 17 20 22 23

0.75 15 18 20 21

0.80 13 16 18 19

0.85 12 15 16 17

0.90 11 13 15 16

0.95 10 12 14 15

1.00 9 11 13 13
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which allows a direct estimate for the sample size and gives an initial value 
for iterations for (8.13).

Table 8.3 gives the sample sizes required for 95% confidence interval pre-
cision estimates and for a range of degrees of freedom m and standardised 
widths w/s.

Table 8.4 gives the multiplication factors for different levels of statistical sig-
nificance. What is interesting to note is that for precision-based studies the 
impact on the sample size is not as great as that for formally powered studies. 
From Table 8.4 the largest impact only increases the sample size by 12%.

8.2.5.1 Worked Example 8.6: Accounting for the Imprecision in 
the Variance of the Variance Used in Calculations

In Worked Example 8.1 for a standardised precision of 0.25 the sample size 
per arm required was estimated as 125 using Table 8.1 and (8.3). Suppose 

TABLE 8.3

Sample Sizes for One Group, nA (nB = rnA), in a Parallel Group Precision 

Study for Different Standardised Widths and Degrees of Freedom 

Using (8.13) for a 5% Level of Significance
 

   Degrees 
of Freedom

Standardised Widths

0.05 0.10 0.25 0.50 0.75 1.00
 

5 3,434 860 139 36 17 10

10 3,242 812 131 34 16 10

25 3,138 786 127 33 16 10

50 3,106 778 126 33 16 10

100 3,090 774 125 33 15 10

   ∞ 3,075 770 125 32 15   9
 

Note: Sample sizes with “infinite” degrees of freedom were estimated from (8.3).

TABLE 8.4

Multiplication Factors for Different Levels 

of Two-Sided Statistical Significance
 

Significance Level ( )

m 0.010 0.025 0.050 0.100
 

    5 1.122 1.120 1.117 1.114

  10 1.056 1.055 1.054 1.053

  25 1.021 1.021 1.021 1.021

  50 1.010 1.010 1.010 1.010

  75 1.007 1.007 1.007 1.007

100 1.005 1.005 1.005 1.005
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the variance used in the sample size calculation was estimated with just 
10 degrees of freedom. Thus, from Table 8.3 we would need to increase the 
sample size to 131 patients per arm to account for this imprecision, around a 
5% increase in the sample size.

8.2.6 Allowing for the Imprecision in the Variance Used 
in the Sample Size Calculations and in Future Trials

In an elegant solution Grieve (1991) demonstrated that if there was prior 
uncertainty around the variance used in the precision sample size calcula-
tions, then the probability of seeing the required precision for a given sample 
size can be calculated from

            

Probability Probf
w rn

r t s
A

n rA

2

1 2 1 2
2 21( ) / , ( )

,, ( ) , ,n r mA 1 2  (8.16)

where probf n r mA( , ( ) , )1 2  is a cumulative density distribution (using the 
same notation as SAS) of an F-distribution on n rA( )1 2 and m degrees 
of freedom. This result was originally given without proof by Mood and 
Snedecor (1946).

Here s2 is the estimate of the variance from a previous trial being used 
to plan the current trial, nA is the sample size in the trial being planned, 
n rA( )1 2 is the degrees of freedom of the variance in this trial and m is the 
degrees of freedom for s2. To solve for nA you iterate (8.16) until the appropri-
ate probability is reached.

The sample sizes from (8.16) are given in Table 8.5. For probabilities of 0.50 
the table should be comparable to Table 8.3; however, the results from this 
table are a little conservative in comparison.

From observation of Table 8.5 there seems to be a marked effect on the 
sample size of having an imprecisely estimated variance for these calcula-
tions for various standardised widths (  = w/ ). There therefore needs to be 
a call regarding the value of these calculations. If we have a well-estimated 
variance (in terms of the number of degrees of freedom), then these calcu-
lations may be considered to add value. However, if the variance is poorly 
estimated, then a call could be made as to the value of the calculations as the 
objective of precision-based trials is to provide good estimates of the vari-
ance and possible treatment effects due to their exploratory nature.

8.2.6.1 Worked Example 8.7: Allowing for the Imprecision in the Variance 
Used in the Sample Size Calculations and in Future Trials

In Worked Example 8.5 a sample size was estimated that accounted for the 
imprecision in the future trials’ variance while in Worked Example 8.6 we 
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estimated the sample size that allowed for the imprecision of the variance 
used in the sample size calculations. Suppose we now wish to account for 
imprecision of the variance used both with respect to the sample size calcu-
lation and the future trial.

For a standardised precision of 0.25 the sample size per arm required was 
estimated as 255 using Table 8.5 and (8.16) assuming the variance is esti-
mated with 10 degrees of freedom and we wish to be 90% sure that we will 
see the desired precision. This is nearly a twofold increase in the sample size. 
If we had 50 degrees of freedom for the variance estimate used in the sample 
size calculation the sample size would need to be increased to 167 patients 
per arm.

TABLE 8.5

Sample Sizes for One Group, nA (nB = nA) in a Parallel Group Precision Study for 

Different Standardised Widths, Probabilities (P) and Degrees of Freedom Using 

(8.16) for a 5% Level of Significance
 

Degrees of 
Freedom

Standardised Widths

Probability 0.05 0.10 0.25 0.50 0.75 1.00
 

0.5 5 3,533 884 143 37 17 10

10 3,291 824 133 34 16 10

25 3,158 791 128 33 15   9

50 3,116 780 126 33 15   9

100 3,095 775 125 32 15   9

3,075 770 124 32 15   9

0.8 5 6,561 1,642 264 67 31 18

10 4,976 1,246 201 52 24 15

25 4,059 1,017 165 43 21 13

50 3,710 930 152 40 19 12

100 3,499 878 144 39 19 12

3,121 793 134 37 18 11

0.9 5 9,544 2,388 384 97 44 26

10 6,319 1,582 255 66 31 18

25 4,667 1,169 190 50 24 15

50 4,081 1,024 167 45 22 14

100 3,737 938 155 42 21 13

3,145 805 138 39 20 13

0.95 5 13,417 3,356 539 136 62 36

10 7,802 1,953 315 81 37 22

25 5,262 1,318 214 56 27 17

50 4,425 1,110 182 49 24 15

100 3,950 993 164 45 22 14

3,165 815 142 41 21 13
 

Note: Sample sizes with “infinite” degrees of freedom were estimated from (8.12).
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8.3 Cross-over Trials

8.3.1 Sample Size Estimated Assuming 
the Population Variance to Be Known

Similar to the parallel group case you can solve the following (Julious, 2004d)
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(8.17)

to give an estimate of the sample size where n is the total sample size. If the 
population variance is considered unknown in the statistical analysis, then 
(8.17) can be rewritten as (Julious, 2004d)
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which can be solved iteratively. Alternatively as with parallel group trials the 
following formula could be used
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To allow for the Normal approximation, (8.17) can be amended to have a 
correction factor (Guenther, 1981; Julious, 2004d)
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The following formula can be used assuming we wish to have 95% confi-
dence interval precision estimates

 
n

w
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2
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Table 8.6 gives sample sizes using (8.18) for various standardised widths 
(  = w/ ). As with parallel group trials the quick formula slightly underesti-
mates the sample size.

8.3.2 Sensitivity Analysis about the Variance Used 
in the Sample Size Calculations

The methodology for assessing sensitivity is the same as for parallel group 
studies, described in Section 8.2.2, in which you assess the loss in the preci-
sion estimates for a highly plausible value for the variance.
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8.3.3 Accounting for the Imprecision of the Variance 
in the Future Trial

The work of Grieve (1989, 1990, 1991) can be extended to cross-over trials such 
that the total sample size can be estimated from
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As with parallel group trials to estimate a sample size you have to iterate 
until a required level of probability is reached. Table 8.7 gives sample sizes 
from (8.22) for given probabilities and various standardised widths (  = w/ ).

8.3.4 Calculations Taking Account of the Imprecision 
of the Variance Used in the Sample Size Calculations

To account for the imprecision in the estimate of the sample variance, the 
results from parallel group trials can be generalised to give
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TABLE 8.6

Total Sample Sizes for a Cross-over Study for 

Different Standardised Widths with 95% 

Confidence Intervals for the Precision Estimates
 
                  n

 
0.05 3,076

0.10 771

0.15 344

0.20 195

0.25 126

0.30 88

0.35 66

0.40 51

0.45 41

0.50 34

0.55 28

0.60 24

0.65 21

0.70 19

0.75 17

0.80 15

0.85 14

0.90 13

0.95 12

1.00 11
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where m is the degrees of freedom about the estimate variance sw
2. This equa-

tion can in turn be rewritten as
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Replacing the t-statistic with a Z-statistic gives the following result:
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which allows a direct estimate for the sample size and gives an initial value 
for iterations for (8.23).

Table 8.8 gives the sample sizes required for 95% confidence interval pre-
cision estimates and for a range of degrees of freedom m and standardised 
widths w/s. The multiplication factors for a cross-over trial are the same as 
those for a parallel group study given in Table 8.4 for various standardised 
widths (  = w/ ).

TABLE 8.7

Total Sample Sizes for a Cross-over Study for Different 

Standardised Widths and Probabilities for 95% Confidence 

Intervals for the Precision Estimates
 

Probabilities

0.50 0.80 0.90 0.95
 

0.05 3,075 3,141 3,175 3,204

0.10 771 803 820 834

0.15 344 366 377 386

0.20 194 211 219 226

0.25 125 138 145 150

0.30 88 98 104 108

0.35 65 74 79 83

0.40 50 58 63 66

0.45 40 47 51 54

0.50 33 40 43 45

0.55 28 34 37 39

0.60 24 29 32 34

0.65 21 26 28 30

0.70 18 23 25 27

0.75 16 20 22 24

0.80 15 18 20 22

0.85 13 17 19 20

0.90 12 16 17 19

0.95 11 14 16 17

1.00 10 13 15 16
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8.3.5 Allowing for the Imprecision in the Variance Used in 
the Sample Size Calculations and in Future Trials

By extending the parallel group result to allow for prior uncertainty 
around the variance used in the precision sample size calculations the 
probability of seeing the required precision for a given sample size can be 

TABLE 8.8

Total Sample Sizes for a Cross-over Precision Study for Different Standardised 

Widths and Degrees of Freedom Using (8.23) for a 5% Level of Significance
 

   Degrees 
of Freedom

Standardised Widths

0.05 0.10 0.25 0.50 0.75 1.00
 

    5 3,435 861 140 37 18 12

  10 3,243 813 133 35 18 11

  25 3,140 787 128 34 17 11

  50 3,107 779 127 34 17 11

100 3,092 775 126 34 17 11

3,076 771 126 34 17 11
 

Note: Sample sizes with “infinite” degrees of freedom were estimated from (8.18).

TABLE 8.9

Total Sample Sizes for a Cross-over Study for Different Standardised Widths, 

Probabilities (P) and Degrees of Freedom Using (8.26) for a 5% Level of Significance
 

Degrees of 
Freedom

Standardised Width

Probability 0.05 0.10 0.25 0.50 0.75 1.00
 

       0.5 5 3,533 885 144 38 18 11

10 3,292 825 134 35 17 11

25 3,159 791 129 34 17 11

50 3,117 781 127 34 16 10

100 3,096 776 126 33 16 10

250 3,084 773 126 33 16 10

500 3,080 772 125 33 16 10

1,000 3,077 771 125 33 16 10

3,075 771 125 33 16 10

      0.8 5 6,563 1,643 266 69 32 20

10 4,977 1,247 203 54 26 16

25 4,061 1,019 167 45 23 14

50 3,713 933 154 42 21 14

100 3,502 881 147 41 21 14

250 3,337 842 142 40 21 14

500 3,262 825 140 40 20 13

1,000 3,213 815 139 40 20 13

3,141 803 138 40 20 13
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calculated from
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To solve for n you iterate (8.26) until the appropriate probability is reached. 
Table 8.9 gives sample size tables using (8.26) for various standardised 
widths (  = w/ ).

Key Messages

Precision-based trials are designed to assess if a treatment effect 
may exist.
Type I and Type II errors are not formally considered when under-
taking precision-based trials; however, sample sizes can be calcu-
lated to ensure we will have a given precision with a required 
probability.

TABLE 8.9 (CONTINUED)

Total Sample Sizes for a Cross-over Study for Different Standardised Widths, 

Probabilities (P) and Degrees of Freedom Using (8.26) for a 5% Level of Significance
 

Degrees of 
Freedom

Standardised Width

Probability 0.05 0.10 0.25 0.50 0.75 1.00
 

       0.9 5 9,546 2,389 385 99 46 28

10 6,321 1,584 257 68 32 20

25 4,670 1,172 193 52 26 17

50 4,085 1,027 171 48 24 16

100 3,742 943 159 45 23 15

250 3,480 881 151 44 23 15

500 3,362 855 148 43 23 15

1,000 3,287 839 146 43 23 15

3,175 820 145 43 22 15

      0.95 5 13,418 3,357 540 138 63 37

10 7,804 1,955 317 83 39 24

25 5,265 1,322 217 59 30 19

50 4,430 1,114 186 52 27 18

100 3,956 999 169 49 25 17

250 3,603 914 158 47 25 16

500 3,448 879 154 46 24 16

1,000 3,349 859 152 46 24 16

3,204 834 150 45 24 16
  

Note: Sample sizes with “infinite” degrees of freedom were estimated from (8.22).
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9
Sample Size Calculations for Parallel Group 
Superiority Clinical Trials with Binary Data

9.1 Introduction

This chapter describes the sample size calculations for trials in which the 
primary outcome is binary. As discussed in Chapter 1 binary outcomes are 
common endpoints in clinical trials and appear when the outcome of inter-
est is a two-point response variable such as presence/absence, alive/dead 
or yes/no.

The sample size calculations are described in this chapter for situations in 
which the trial design is a parallel group. The conventional calculations are 
first introduced for each trial design and objective, followed by calculations, 
which account for the imprecision of the estimates.

9.2 Inference and Analysis of Clinical Trials 
with Binary Data

There is a saying in statistics that “as ye shall design is as ye shall analyse”. 
The meaning of this is that if for example you allow, say, for stratification by 
treatment centre in your design then you should also allow for centre in the 
analysis. The reverse is also true: “As ye shall analyse is as ye shall design”.

We have previously, although not specifically, touched on this when dis-
cussing appropriate estimates of the variance. The maxim is particularly true 
for a trial in which the primary outcome is a binary response.

For a clinical trial in which the primary outcome is a binary response the 
data may take the form summarised in Table 9.1 where pA and pB are the 
responses anticipated on treatments A and B, respectively; p

_
 is the average 

response across treatments; nA and nB are the sample sizes in each treatment 
group, respectively; and n is the total sample size.

So far, so straightforward, and indeed in the face of it a binary response is 
a relatively easy outcome to summarise as all the data from a trial can be put 
simply into a table of the form of Table 9.1 for analyses.
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Once you have an observed response (pA and pB) for the two treatments 
you may then wish to summarise the effect appropriately. Table 9.2 gives 
definitions of the most common summary measures. For this chapter we 
concentrate on the absolute risk difference and the odds ratio.

9.3 ’s or p’s

Being someone from the north of England I like my ‘s and p’s, but in the 
context of designing clinical trials with a binary response a thing to be con-
scious of when reading this chapter is the flip-flopping between ’s or p’s. 
To a degree this is unavoidable although admittedly a little confusing. For 
inference ’s are taken as the known population estimates for the absolute 
risks, while p’s are taken as sample estimates (from a trial) of . Hence, in the 
discussion of confidence intervals we give p’s in the results as we are talking 
about sample estimates.

For sample size calculations we mainly assume absolute response is known 
for the sample size calculation, so we give ’s. This is contradicted of course 
by our need to do a trial to try to quantify them. It is further contradicted by 
the fact we often take for ’s estimates (p’s) from a retrospective study.

TABLE 9.1

Summary for a Clinical Trial with a Binary Outcome
 

Outcome

Treatment 0 1 Sample Size
 

A 1  pA pA nA

B 1  pB pB nB

Overall response 1  p
_

p
_

  (pA  pB)/2 n  (nA  nB)
 

TABLE 9.2

Summary Measures for a Binary Outcome
 

Measure Abbreviation Definition
 

Absolute risk difference pA   pB

Odds ratio OR
p p
p p

A B

B A

( )

( )

1

1

Relative risk RR
p
p

A

B

Number needed to treat NNT
1

p pA B
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It is a Gordian knot. Making assumptions about the population parameter is 
something that we need to do in all sample size calculations and one to which 
sample size calculations are very sensitive, as discussed throughout the book.

9.3.1 Absolute Risk Difference

The absolute risk reduction is probably the simplest way of summarising 
binary data. We simply take the risk of the event for each treatment, pA and 
pB, and take the absolute difference of these, pA  pB.

One drawback of working on the absolute risk scale is that the difference is 
bounded by (−1, 1). This bounding can adversely affect inference, especially 
when a response is near one of the bounds. The effect of bounding of the 
absolute risk scale is discussed throughout the chapter.

9.3.1.1 Calculation of Confidence Intervals

To calculate an estimate of the sample size you generally need an effect size 
and some estimate of the variation about the response.

9.3.1.2 Normal Approximation

Under Normal approximation the confidence interval for the difference in 
absolute risks is defined as
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 (9.1)

where

 

se p p
p p

n
p p

nA B
A A

A

B B

B

( )
( ) ( )

.
1 1

 

(9.2)

This is referred to as the Wald method (Newcombe, 1998b). This confidence 
interval would be used in conjunction with a chi-squared test. Thus, if a chi-
squared test is the planned analysis and the absolute risk difference will be 
the quantification of effect, then a sample size calculation consistent with 
(9.1) would be appropriate.

9.3.1.3 Normal Approximation with Continuity Correction

We can add a continuity correction to the confidence interval through addi-
tion to the right-hand side of (9.1) of ( / / )/1 1 2n nA B  (Newcombe, 1998b; Fleiss, 
1981) such that it takes the form

 
p p Z se p p n nA B A B A B1 2 1 1 2/ ( ) ( / / )/ .

 (9.3)
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This confidence interval would be used in conjunction with a continuity 
corrected chi-squared test. Thus if a continuity corrected chi-squared test is 
the planned analysis, then the sample size calculation consistent with (9.3) 
would be appropriate.

Also, if a Fisher’s exact test is the planned analysis, then a sample size cal-
culation using a continuity correction maybe appropriate. This is discussed 
later in the chapter.

9.3.1.4 Exact Confidence Intervals

For two independent risks pA (rA events in nA subjects) and pB (rB events in 
nB subjects) the probability function for their difference   pA  pB can be 
expressed in terms of  and a nuisance parameter pB (Agresti, 2003; Agresti 
and Min, 2001; Newcombe, 1998b):
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(9.4)

To obtain the lower and upper bounds for the 95% confidence interval (9.4) 
could be used through iteration to obtain the 2.5th and 97.5th percentile. This 
confidence interval would be used if a Fisher’s exact test is the planned anal-
ysis; again the sample size calculation should reflect this.

9.3.2 Odds Ratio

The difference between two absolute risks can also be expressed through the 
odds ratio (OR), which is defined as
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(9.5)

Odds of 2:1 would mean that for every three subjects on a control regimen, for 
example, we would expect one event (i.e. non-events are twice as numerous 
as events). Odds of 4:1 on the investigative regimen would mean non-events 
are four times as numerous. An odds ratio is simply therefore a ratio of two 
odds and is an assessment of the likelihood of success on one treatment com-
pared to another. Hence, this example odds ratio would be 2, indicating non-
events relative to events are twice as numerous on the investigative regimen 
compared to control.

One of the main advantages of the odds ratio is that it is invariant to the 
definition of success (Olkin, 1998; Walker, 1998). An analysis based on the 
odds ratio also easily allows us to adjust for covariates such that estimates 
can be provided that are independent of, but adjusted for, any predictive 
factors of interest. As an analysis with covariate adjustment is often the stan-
dard analysis it is often used to summarise a trial.



Sample Size Calculations for Parallel Group Superiority Clinical Trials 143

The log odds ratio is also an attractive scale for analysis as it is both 
unbounded and likely to be additive across a wide range.

9.3.2.1 Calculation of Confidence Intervals

9.3.2.1.1  Normal Approximation

Under the Normal approximation the confidence interval for the log(OR) is 
defined as

 
log( ) (log( )),/OR Z se OR1 2  (9.6)

where the confidence interval on the original odds ratio scale is obtained 
by back-transforming the confidence interval on the log scale. There are a 
number of ways of estimating the standard error for the odds ratio (McCullagh, 
1980), although in this chapter we concentrate on just one, defined by Whitehead 
(1993) as

 

Var OR
n pi i

 ( ( )) ,Log
12

1 1
2 3

 (9.7)

where p p pA B1 2( )/  and p p2 11 . For just two categories (9.7) becomes
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where

 
2 1 1 11 1p p p p p pA A B B( ) ( ) ( ).  (9.9)

Thus, the variance for the log(OR) is proportional to the reciprocal of the 
variance for the difference in absolute risks, that is,

 
Var  VarLog(OR p pA B) / ( ).~ 1  (9.10)

This Normal approximation confidence interval would be used in conjunc-
tion with a chi-squared test. Thus, if a chi-squared test is the planned anal-
ysis and an odds ratio will be used to quantify effect, then a sample size 
calculation consistent with (9.6) would be appropriate.

9.3.2.1.2  Exact Confidence Intervals

Following the notation in Table 9.3, by conditioning on x a sufficient statistic 
for the odds ratio can be obtained (Fisher, 1935; Chan, 2003; Dunnett and 
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Gent, 1977). Hence, the probability of observing an outcome in the top left cell 
equal to x can be calculated from a hypergeometric distribution (Troendle 
and Frank, 2001; Agresti and Min, 2001; Agresti, 2003):
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In this calculation the assumption is that cell counts follow a multinomial 
distribution or are independent Poisson or independent binomial, condition-
ing on the row and column marginal totals (Agresti and Min, 2003).

Using this result therefore two one-sided confidence intervals, each of /2, 
can be calculated through iteration to find
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to construct a (1 − )% confidence interval (Troendle and Frank, 2001). Note 
that unlike the difference in absolute risks we can compute exact confidence 
intervals for odds-ratios (Miettinen and Nurminen, 1985). Now the sum 
extends across all x that satisfy the condition and are possible for the totals 
n1 and nA.

Exact confidence intervals around the odds ratio should be used in conjunc-
tion with a Fisher’s exact test, and any sample size calculation should reflect 
this.

9.4 Sample Sizes with the Population Effects 
Assumed Known

9.4.1 Odds Ratio

For a given binary response, A and B are defined as the proportion of 
responders expected on each of the two treatment groups A and B, respec-
tively. Each of these expected responses can in turn be written in terms of 
odds, A/(1  A) and B/(1  B) (each odds is a ratio of responders over 
non-responders). As a consequence an odds-ratio can be used as assessment 

TABLE 9.3

Notation for Calculation Confidence Intervals about an Odds Ratio
 

Number of Successes Number of Failures Total
 

Treatment A X nA − x nA

Treatment B Y nB − y nB

Total n1 n2 n
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of the treatment difference (and effect size for sample size calculations) where 
the odds ratio is defined as in (9.5).

In a trial in which the objective is to determine whether there is evidence 
of a statistical difference between the regimens the null (H0) and alternative 
(H1) hypotheses may take the form

H0:  The two treatments have equal effect with respect to the odds 
ratio (OR  1).

H1:  The two treatments are different with respect to the odds ratio 
(OR  1).

From these null and alternative hypotheses a formula can be constructed to 
calculate a sample size per group (Julious et al., 1997, 2000; Campbell, Julious and 
Altman, 1995; Whitehead, 1993). As discussed in Chapter 1, in general terms for 
a two-tailed, -level test the variance of the measure of effect must satisfy

  

Var S
d

( )
(Z Z

2

1 1 2
2

/ )
,  (9.13)

and the variance of the log odds ratio (S  log OR in this instance) can be 
approximated by (Whitehead, 1993)

 

Var S
nA i = i

( ) ,
6

2 31 1

 (9.14)

where 
_

i is the average response across treatments for each outcome category 
(i.e. 1 1 2 2( )/

A B
 and 2 11 ), and  and  are the overall Type I and 

Type II errors, respectively, with Z1 /2 and Z1 , respectively, denoting the 
percentage points of a standard Normal distribution for these two errors. 
Here nA is the sample size for treatment A, assuming equal allocation to 
treatment and nA  n/2. Note that in this chapter the assumption will be that 
there is equal allocation to treatment.

Now by equating (9.13) with (9.14) we get
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Z Z / OR
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1 2
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1
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[ ] log/1-

2
( )

.  (9.15)

Table 9.4 provides sample sizes for various odds ratios and responses on a 
given treatment using (9.15). This table was calculated also using the result 
(9.31) and Table 9.10. A description of these will be given later in this chapter.

9.4.2 Absolute Risk Difference

Keeping the data on the absolute risk difference scale would have the effect 
expressed in terms of an absolute difference defined as pA  pB. On this 
scale the null and alternative hypothesis would be written as
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H0:  The two treatments have equal effect with respect to the absolute 
risk difference ( A  B).

H1:  The two treatments are different with respect to the absolute risk 
difference ( A  B).

There are a number of approaches to calculating a sample size which will 
now be described.

9.4.2.1 Method 1: Using the Anticipated Responses

A sample size formula using the anticipated responses under the alternative 
hypothesis—and following the same arguments as (9.13) and (9.14)—where 
an absolute difference is the response of interest can be derived (Julious et al., 
1997; Campbell, Julious and Altman, 1995). For the difference in the response 
we have (as nA  nB)

 
Var S

n
A A B B

A

( )
( ) ( )

,
1 1  (9.16)

TABLE 9.4

Sample Size Estimates for One Arm of a Parallel Group Trial for Various 

Expected Outcome Responses for a Given Treatment A and Odds Ratios 

for a Two-Sided Type I Error Rate of 5% and 90% Power
 

Odds Ratio

A 1.25 1.50 1.75 2.00 3.00 4.00
 

0.05 8,002 2,212 1,072 650 208 110

0.10 4,278 1,200 588 362 122 68

0.15 3,058 868 432 268 94 56

0.20 2,468 710 356 224 82 50

0.25 2,132 620 316 200 76 46

0.30 1,926 566 290 186 72 44

0.35 1,800 534 276 180 70 44

0.40 1,726 518 270 176 70 46

0.45 1,692 512 270 176 72 46

0.50 1,694 518 274 180 76 50

0.55 1,730 532 284 188 80 52

0.60 1,804 560 300 200 86 56

0.65 1,924 602 326 218 94 62

0.70 2,106 664 360 242 106 70

0.75 2,382 756 412 278 122 80

0.80 2,820 900 494 334 146 98

0.85 3,574 1,150 632 430 190 126

0.90 5,112 1,654 914 622 276 184

0.95 9,780 3,182 1,766 1,202 536 360
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and hence equating (9.13) and (9.17) we have

 

n
Z Z

A
A A B B

A B

[ ] ( ( ) ( ))

( )

/1 1 2
2 1 1

22
.  (9.17)

Table 9.5 gives the sample sizes using (9.17).
From (9.9) and (9.16) we can estimate the variance for the difference in 

absolute risk in terms of the average response. From this we can produce 
Figure 9.1, which gives the variance for the absolute risk difference for differ-
ent mean absolute responses. As we can see from this figure, the variances 
take a “bell” shape in relation to the mean absolute response with a maxi-
mum when p 0 5. .

Another feature to highlight is how the variance is relatively stable for a 
large range of the mean response (0.3 to 0.7), only varying greatly as the mean 
response approaches a boundary. From this fact and within this range for the 
average response a quick estimate of the sample size, for 90% power and a 
two-sided significance level of 5%, can be obtained from the following result:

 

nA
A B

5 25
2

.

( )
.  (9.18)

For 80% power and a two-sided significance level of 5% the sample size can 
be estimated from

 

nA
A B

4
2( )

.  (9.19)

Both of these results will provide conservative “maximum” estimates of the 
sample size.

TABLE 9.5

Sample Size Estimates Using Method 1 for One Arm of a Parallel Group Trial 

for Various Expected Outcome Responses for a Given Treatment A and 

Comparator B for a Two-Sided Type I Error Rate of 5% and 90% Power
 

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
 

0.10 578

0.15 184 915

0.20 97 263 1,209

0.25 63 120 331 1,461

0.30 44 79 158 389 1,671

0.35 33 54 94 182 437 1,839

0.40 25 39 62 106 200 473 1,965

0.45 20 29 44 69 115 214 500 2,048

0.50 16 23 33 48 74 121 223 515 2,091
 



148 Sample Sizes for Clinical Trials

9.4.2.2 Method 2: Using the Responses under the 
Null and Alternative Hypotheses

It could be argued that (9.17) is too simplistic as it assumes that we have 
the same variance under the null and alternative hypotheses. This is not the 
case, however, as under the null we have A  B while under the alterna-
tive we have A  B, which give different variances. Hence, in the sample 
size calculation Z1 /2 should be multiplied by the variance under the null 
hypothesis, while Z1  should be multiplied by the variance under the alter-
native hypothesis, that is, something of the form

n
Z Z

A

( 1 2 1Variance under Null Variance unnder the Alternative)

( )
.

2

2
A B   

  (9.20)

Therefore, the sample size can be estimated from
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FIGURE 9.1 Plot of the variance of an absolute response for different responses.
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where 1 2( )/A B . Note that with a superiority under the null hypoth-
esis the treatment responses are the same; hence A  B. An estimate of the 
response under the null hypothesis is therefore the average response across 
the two treatments 

_
. This is an estimate of the common response and is 

used to give an estimate of the variance under the null hypothesis. Sample 
sizes using (9.21) are given in Table 9.6.

The sample sizes in Table 9.6 are a little conservative compared to Table 9.5. 
Practically, however, use is often made of (9.9) to demonstrate that (9.17) 
approximately equates to (9.21) as evidenced empirically from Table 9.7. 
From this table we can see that for most practical effect sizes (within 0.30) 
(9.9) holds and hence (9.17) should be a reasonable estimate for (9.21). This 
is further evidenced through inspection of the sample sizes estimated in 
Table 9.6 and Table 9.5.

9.4.2.3 Accounting for Continuity Correction

If the final analysis was to be a continuity-corrected chi-squared analysis, 
then (9.17) and (9.21) should be increased to account for the conservative 
nature of this test by inflating the estimated sample size nA to ncc, to account 
for the continuity correction, from

 

n
n

ncc
A

A4
1 1

4
2

.  (9.22)

The result (9.22) could also be used to estimate the sample size for a 
Fisher’s exact test. Table 9.8 gives estimates of the sample size using (9.22) 
with (9.21).

TABLE 9.6

Sample Size Estimates Using Method 2 for One Arm of a Parallel Group Trial for 

Various Expected Outcome Responses for a Given Treatment A and Comparator 

B for a Two-Sided Type I Error Rate of 5% and 90% Power
 

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
 

0.10 582

0.15 188 918

0.20 102 266 1,212

0.25 66 134 336 1,464

0.30 48 82 162 392 1,674

0.35 36 58 98 186 440 1,842

0.40 28 42 66 110 204 478 1,970

0.45 24 34 48 72 118 218 504 2,054

0.50 20 26 36 52 78 124 228 520 2,096
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TABLE 9.7

Variances Estimated from Two Different Results for Different Expected 

Treatment Responses A and B

a. A (1  A)  B (1  B)

B

A 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
 

0.1 0.18 0.25 0.30 0.33 0.34 0.33 0.30 0.25 0.18
0.2 0.25 0.32 0.37 0.40 0.41 0.40 0.37 0.32 0.25
0.3 0.30 0.37 0.42 0.45 0.46 0.45 0.42 0.37 0.30
0.4 0.33 0.40 0.45 0.48 0.49 0.48 0.45 0.40 0.33
0.5 0.34 0.41 0.46 0.49 0.50 0.49 0.46 0.41 0.34
0.6 0.33 0.40 0.45 0.48 0.49 0.48 0.45 0.40 0.33

0.7 0.30 0.37 0.42 0.45 0.46 0.45 0.42 0.37 0.30

0.8 0.25 0.32 0.37 0.40 0.41 0.40 0.37 0.32 0.25

0.9 0.18 0.25 0.30 0.33 0.34 0.33 0.30 0.25 0.18

b. 2
_

1 (1  
_
)

 
B

A 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
 

0.1 0.18 0.26 0.32 0.38 0.42 0.46 0.48 0.50 0.50
0.2 0.26 0.32 0.38 0.42 0.46 0.48 0.50 0.50 0.50
0.3 0.32 0.38 0.42 0.46 0.48 0.50 0.50 0.50 0.48
0.4 0.38 0.42 0.46 0.48 0.50 0.50 0.50 0.48 0.46
0.5 0.42 0.46 0.48 0.50 0.50 0.50 0.48 0.46 0.42
0.6 0.46 0.48 0.50 0.50 0.50 0.48 0.46 0.42 0.38

0.7 0.48 0.50 0.50 0.50 0.48 0.46 0.42 0.38 0.32

0.8 0.50 0.50 0.50 0.48 0.46 0.42 0.38 0.32 0.26

0.9 0.50 0.50 0.48 0.46 0.42 0.38 0.32 0.26 0.18
 

TABLE 9.8

Sample Size Estimates Using Method 2 for One Arm of a Parallel Group Trial for 

Various Expected Outcome Responses for a Given Treatment A and Comparator  

B for a Two-Sided Type I Error Rate of 5% and 90% Power
 

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
 

0.10 622

0.15 208 958

0.20 116 286 1,252

0.25 76 148 356 1,504

0.30 56 92 176 412 1,714

0.35 44 66 108 200 460 1,882

0.40 34 50 74 120 218 498 2,010

0.45 30 40 56 80 128 232 524 2,094

0.50 26 32 42 60 86 134 242 540 2,136
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For completeness Table 9.9 is included; it gives sample sizes for Fisher’s exact 
test (Hintze, 2007). We can see from inspection of this table and Table 9.8 that 
the result using the continuity correction is reasonably close to the Fisher’s 
exact sample sizes provided that the absolute risk difference is less than 0.15 
and outside of this is a little conservative.

The advantage of course of (9.22) is that we can calculate sample sizes by 
hand without recourse to use of a computer.

9.4.3 Equating Odds Ratios with Absolute Risks

Although (9.15) and (9.17) seem on the face of it to be quite different it can 
be shown that they are approximately algebraically the same (Julious and 
Campbell, 1996). This comes from the following two results:
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which holds for 0.33  OR  3.00 (i.e. for most practical differences). Thus,
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TABLE 9.9

Sample Size Estimates for One Arm of a Parallel Group Trial for Various Expected 

Outcome Responses for a Given Treatment A and Comparator B for a Two-Sided Type I 

Error Rate of 5% and 90% Power Assuming Fisher’s Exact Test Is the Final Analysis
 

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
 

0.10 621

0.15 207 957

0.20 114 286 1,252

0.25 69 146 354 1,504

0.30 51 89 174 412 1,714

0.35 38 62 107 198 460 1,882

0.40 31 47 72 119 216 496 2,008

0.45 24 36 53 79 128 230 523 2,092

0.50 21 29 41 58 85 134 240 538 2,134
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which if substituted back into (9.23) gives the result
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Thus, (9.15) and (9.17) can be used interchangeably depending on preference. 
Due to this property we therefore require
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Hence, from (9.29) the following approximate result can be derived:

 A B ORlog( ) ( ( )),1 1 1  (9.30)

and therefore the absolute risk difference can be written in terms of the odds 
ratio and the mean overall response.

As a brief note a by-product of the results highlighted in this section is that 
as a result of (9.30) the null and alternative hypotheses on the absolute risk 
difference scale can be written as

H0:  The two treatments have equal effect with respect to the absolute 
risk responses | | .A B 0

H1:  The two treatments are different with respect to the absolute risk 
responses | | |log( )|( ( )).A B OR 1 1 1

The practical consequence of these results is that the formulae for the odds 
ratio and the absolute difference can be used, for all intents and purposes, 
interchangeably for the same effects sizes.

9.4.4 Equating Odds Ratios with Absolute Risks: Revisited

The result in Section 9.4.3 is quite reassuring in that it demonstrates that you 
can take two different routes to obtain (approximately) the same answer. A 
pragmatic approach is assuming we have an estimate of effect in terms of an 
odds ratio—from a logistic regression say—and an estimate of the control 
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response rate pA then for OR  1 we have

 
B

A

A A

OR
OR1

.  (9.31)

Hence, with an estimate of A and B we can use (9.17) [and (9.22)] to estimate 
the sample size required.

From (9.31) Table 9.10 can be estimated; it gives values for B for various A 
and odds ratios,

9.4.5 Worked Example 9.1

McIntyre et al. (2005) undertook a trial to compare the efficacy of buccal 
midazolam versus rectal diazepam for emergency treatment of epileptic sei-
zures in children. For buccal midazolam the authors observed a therapeutic 
success rate of 56%. Suppose now we wish to design a new study to investi-
gate a new treatment with buccal midazolam as the control. We expect this 
new treatment to increase the chances of success to 66%. We wish to have 
90% power and a two-sided significance level of 5%.

TABLE 9.10

Expected Outcome Responses for an Investigative Treatment B for Various 

Comparator Response Rates A and Odds Ratios
 

Odds Ratio

A 1.25 1.50 1.75 2.00 3.00 4.00
 

0.05 0.06 0.07 0.08 0.10 0.14 0.17

0.10 0.12 0.14 0.16 0.18 0.25 0.31

0.15 0.18 0.21 0.24 0.26 0.35 0.41

0.20 0.24 0.27 0.30 0.33 0.43 0.50

0.25 0.29 0.33 0.37 0.40 0.50 0.57

0.30 0.35 0.39 0.43 0.46 0.56 0.63

0.35 0.40 0.45 0.49 0.52 0.62 0.68

0.40 0.45 0.50 0.54 0.57 0.67 0.73

0.45 0.51 0.55 0.59 0.62 0.71 0.77

0.50 0.56 0.60 0.64 0.67 0.75 0.80

0.55 0.60 0.65 0.68 0.71 0.79 0.83

0.60 0.65 0.69 0.72 0.75 0.82 0.86

0.65 0.70 0.74 0.76 0.79 0.85 0.88

0.70 0.74 0.78 0.80 0.82 0.88 0.90

0.75 0.79 0.82 0.84 0.86 0.90 0.92

0.80 0.83 0.86 0.88 0.89 0.92 0.94

0.85 0.88 0.89 0.91 0.92 0.94 0.96

0.90 0.92 0.93 0.94 0.95 0.96 0.97

0.95 0.96 0.97 0.97 0.97 0.98 0.99
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The quick result to give a “top-end” estimate of the sample size from (9.18) 
gives an estimate of the sample size as 525 patients per arm. From method 1 
and (9.17) the sample size is estimated to be 494.83 or 495 patients per arm. 
The quick result overestimates the sample size by 30 patients.

If we had used response rates of 35% and 45% (equivalent to 65% and 55%, 
respectively), then from Table 9.5 the sample size estimate would be 500 
patients per arm. From Table 9.6 the sample size is 504 using method 2.

9.4.6 Worked Example 9.2

Taking the response rates to be 35% and 45% and using the estimate of the 
sample size of 504 we wish to quantify the increase in the sample size assum-
ing a continuity correction is to be used in the final analysis.

If a continuity-corrected chi-squared analysis was planned, then the esti-
mated sample size would be

 

n
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.
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523.8 or 524 patients per arm

or 20 patients more per arm to account for the more conservative nature of 
the test.

If a Fisher’s exact test was to be the final analysis, then Table 9.9 estimates 
the sample size to be 523 patients per arm.

9.4.7 Worked Example 9.3

Suppose for the same response of 56% for buccal midazolam the effect 
size of interest is an odds ratio of 2 in favour of the new treatment with a 
sample size required to achieve a Type II error of 10% and a Type I error 
of 5%.

Now, from (9.31) an odds ratio of 2 and an expected control response of 
0.56 would equate to the following response on the investigative treatment:
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1

2 0 56

1 0 56 2 0 56
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and the sample size would be estimated as 183.9 or 184 patients per arm.
Taking the response on control as 0.55 [

_
  (0.56  0.72)/2 = 0.64  0.65] then 

from Table 9.4 the sample size is 188.
Now if 194 subjects is taken as the evaluable sample size with 10% dropouts 

expected in the study the total sample size to ensure this evaluable sample 
size would be 188/0.9  209 patients per arm.
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9.5 Inclusion of Baselines or Covariates

To illustrate the issues of designing clinical trials when covariates are to be 
considered with binary data the hypothetical example in Table 9.11 is given.

This example illustrates the issue of covariate adjustment through a logis-
tic regression with a binary response with these hypothetical data taken to 
be from a parallel group trial designed to compare the outcome of two treat-
ments for which the outcome takes a binary form. There is a known prognos-
tic factor, gender, that exists, and there is perfect balance with respect to this 
factor and no interaction between the factor and treatment (see Table 9.11a) 
with an odds ratio equal to 3 in each subgroup. If we collapsed the data 
and ignored the covariate the estimated odds ratio is biased down to 2.78 
(see Table 9.11b). Hence the unadjusted collapsed response gives a biased 
(towards the null) estimate of treatment effect.

This hypothetical example nicely illustrates the issues as the unadjusted log 
odds ratio has a smaller standard error of 0.119 compared to 0.125 for a logistic 
regression. Hence, the standard error has increased by 5% through covariate 
adjustment. However, this effect is more than offset by the bias in the log odds 
ratio, with the unadjusted log odds ratio being 1.022 (OR  2.78) compared to 
an adjusted 1.099 (OR  3.00). A 7.5% increase occurs in the log odds ratio by 
adjusting. Thus, bias introduced by not adjusting it seems will pull the esti-
mate nearer to the null despite any reduction in the standard error.

As discussed in Chapter 3 in the analysis of the results of a clinical trial, 
the effects of treatment on the response of interest are often adjusted for 

TABLE 9.11

Hypothetical Data from a Parallel Group Trial

a. Broken Down by Gender

Males Females

Outcome Outcome

1 0 Total  1 0 Total

Treatment A 225   75 300 Treatment A 150 150 300

B 150 150 300  B   75 225 300

Total 375 225 600  Total 225 375 600

b. Overall

Outcome

1 0 Total
 

Treatment A 375 225    600

 B 225 375    600

Total 600 600 1,200
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predictive factors, such as demographic or clinical covariates, by fitting them 
concurrently with the treatment variable. It was highlighted in this chapter 
how when adjusting for a highly predictive covariate, such as baseline, the 
sample size can be dramatically reduced due to a reduction in the variance 
estimate for data anticipated to take a Normal form.

With binary data we do not have such a marked effect. Not adjusting 
for covariates biases the estimate of effect towards the null response (in 
terms of odds ratios), although this is countered also by a reduction in the 
variance. 

In the context of sample size calculations the saying “as ye shall analyse is 
as ye shall design” would need to be considered such that if a logistic regres-
sion is planned as the final analysis than an estimate of response from an 
equivalent analysis would be optimal to get estimates of treatment effect. 
However, such considerations are not as critical as with Normal data.

9.6 Sample Size Re-estimation

For binary data sample size re-estimation is relatively straightforward for 
we could use the average anticipated response rate 

_
1, which we can esti-

mate blind to the actual treatment allocation. From (9.9), (9.17) can be rewrit-
ten as
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In the context of the problem here 
_

s is the average response used in the sam-
ple size calculation. Suppose now 

_
I is the average response estimate from the 

interim analysis; then all things being equal, assuming that the treatment effect 
is as per the sample size calculation, the sample size can be re-estimated as
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The convention for the sample size re-assessment would be to have some 
form of restricted sample size re-estimation with the following procedure 
applied as for Normal data discussed in Chapter 3:

1. Take an initial estimate of the same size: n (say).

2. After a proportion of subjects has been enrolled (say n/2) recalcu-
late the sample size n1, using the same sample size criteria Type I 
error, power, effect size.

3. The re-estimated sample size is taken as max (n,n1).
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9.7 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

In Chapter 3 the concept of a sensitivity analysis of a trial design was first intro-
duced for data anticipated to take a Normal form in which the trial’s sensitivity 
was assessed with respect to the variance estimate used in the calculations.

For binary data, however, it is the response rate on the control arm pA, usu-
ally estimated from a previous clinical study as an estimate of population 
response, to which the study design is sensitive. This control response rate 
in turn feeds into the estimate of variance used in the calculations. Hence, 
any imprecision in the estimation of the control response rate will have an 
impact on the study design.

To investigate the effect the imprecision of the estimate of the control 
response rate will have on the study design a range of plausible values could 
be obtained through construction of a 95% confidence interval. From the 
two tails of this confidence interval a re-estimation of the variance could be 
made. The power could then be assessed using these new variance estimates 
through use of the following equation for absolute risk differences—(9.17) 
rewritten in terms of power
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and the following for odds ratios[(9.15) rewritten in terms of power]
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These calculations would assess the sensitivity of the study design to plau-
sible values for the control response rate.

In truth due to the stability of the variance of the absolute risk within the 
range (0.3, 0.7) there would be less need to assess a study’s sensitivity if the 
anticipated response is to be around 50%. Due to (9.10) the same is also true 
for the odds ratios. For anticipated responses outside of (0.3, 07), however, 
there may be a need to assess sensitivity.

9.7.1 Worked Example 9.4

Suppose previously we had conducted a trial in 50 patients in which the 
control event rate was estimated to be 50%. We wished with 90% power and 
two-sided significance to reduce this to 40%. The sample size from Table 9.6 
was estimated to be 519 patients per arm.
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A 95% confidence interval for this point estimate would give the true value 
as between 36% and 64%. Table 9.12a gives the equivalent calculations assum-
ing the effect was fixed at an absolute difference of 10%. We can see from these 
results that if a lower or higher response rate than expected was observed the 
power would actually increase. The reason for this, recalling from discussion 
in this chapter, is that the maximum value the variance could possibly be on 
the absolute risk difference scale is when the response rate is expected to be 
in the middle of the range. This is a situation we approximately anticipate to 
observe here (although the pooled two-group variance is a little different as 
it accounts for the anticipated investigative response rate).

Table 9.4b gives the sensitivity of the study design using the odds ratio, 
which for this example is 1.5, to calculate the sample size, which from 
Table 9.4 is estimated as 517 patients per arm. Assuming the effect stays the 
same at 1.5 we can see from Table 9.4b that there is only a small loss in power 
of 4% if the control response rate is 36% and a nominal loss if the response 
of 64% was observed.

9.7.2 Worked Example 9.5

Worked Example 9.4 was a special case in that the response was anticipated 
to be towards the middle of the range. Suppose though that the control 
response was expected to be 20%, and this was estimated from a study with 
50 patients on the control arm. The sample size from Table 9.4 required for an 
odds ratio of 1.5 is 900 patients per arm.

The equivalent calculation on the absolute risk scale gives a sample size 
of 917 (a control response rate of 20% and an odds ratio of 1.5 equates to an 
absolute difference of 5.7%).

TABLE 9.12

Sensitivity Analysis for Superiority Worked Example

a. Absolute Risk Scale

95% Confidence Interval

Observed Lower Upper
 

Control response 0.50 0.36 0.64

Investigative response 0.40 0.26 0.53

Power     90%     94%    91%

b. Odds Ratio Scale

95% Confidence Interval

Observed Lower Upper
 

Control response 0.50 0.36 0.64

Investigative response 0.40 0.28 0.54

Power    90%    86%    89%
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Table 9.13 gives the same sensitivity analysis as conducted with Table 9.12. 
We can see here we get quite markedly different answers compared to 
Table 9.12 with the absolute risk difference scale quite sensitive to the assump-
tions around active response rate.

What these examples highlight is the complexity of investigating the sen-
sitivity of a study with an uncertain control response rate. The sensitivity of 
the design varies according to the anticipated control response rate.

9.8 Calculations Taking Account of the Imprecision 
of the Estimates of the Population Effects 
Used in the Sample Size Calculations

As highlighted in Section 9.7 if a study has a primary endpoint that is binary 
then a study’s design would not be relatively sensitive with respect to the 
variance of the anticipated response as long as the anticipated response is 
within the range (0.3, 0.7). Given this, the calculations that are now described 
may seem to be a little laborious as there are no general solutions, and 
numerical methods have to be applied.

However, although a study may be robust within the range (0.3, 0.7) out-
side this range they can be quite sensitive, and although the calculations 
may be a little time consuming they should be considered when designing 
clinical trials. Clinical trials are expensive and can take a long time to run, 
so spending a little time up front on optimising the sample size calculation 
could prove to be beneficial.

TABLE 9.13

Sensitivity Analysis for Superiority Worked Example

A. Absolute Risk Scale

95% Confidence Interval

Observed Lower Upper

Control response 0.200 0.089 0.311

Investigative response 0.143 0.034 0.254

Power        90% 90%        77%

b. Odds ratio scale

95% Confidence Iinterval

Observed Lower Upper

Control response 0.200 0.089 0.311

Investigative response 0.143 0.061 0.231

Power         90% 62%      90%
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9.8.1 Odds Ratio

Assume in this instance that it is the control response rate pA, estimated from 
a previous study, that is random, and that the effect size of interest is the 
odds ratio and is fixed. Using an appropriate confidence interval methodol-
ogy an estimate of the first, second and third percentiles, say, of pA can be 
made based on the previously observed pA. In this instance these percentiles 
are estimated using a Normal approximation.

For each percentile the corresponding anticipated response on the investi-
gative arm can be estimated from
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(9.36)

Now for the case of the log(OR) remember the approximate result
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and an estimate of the variance can be made for each percentile. If we took 
the average across all the percentiles, then for a given sample size n and 
imprecision around the estimate of pA the power can be estimated from
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  (9.38)

Then (9.38) can be iterated on n until the appropriate power has been reached.

9.8.2 Absolute Risk Difference

Remember that, for the difference in absolute risks pA  pB, the variance is 
defined as
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 (9.39)

As described for an odds ratio using the Normal approximation percentiles 
for pA can be estimated from previously observed pA. Now assuming the 
effect size pA  pB is fixed then for each percentile the corresponding antici-
pated response on the investigative arm can be estimated from

 
p p EffectB A

 (9.40)
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and an estimate of the variance made from (9.39). Correspondingly an esti-
mate of the power for a given n and imprecision about pA can be made from
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  (9.41)

The sample size can be estimated through iteration.

9.8.3 Worked Example 9.6

An investigator wishes to design a study in which the response anticipated 
on the control therapy is 20%. The effect of interest is an odds ratio of 2.0 “in 
favour” of the control therapy (i.e. the aim is to reduce the number of events), 
and the investigator wishes to design the study with Type I and II errors 
fixed at 5% and 10%, respectively. From (9.15) the sample size required would 
be 333 patients per arm of the trial.

Now suppose this estimate of the control response rate came from a trial 
with 50 patients receiving the control. To allow for the imprecision in the 
estimate of the control response rate the sample size [from (9.38)] would need 
to increase to 354 patients.

9.9 Calculations Taking Account of the Imprecision 
of the Estimates Used in the Sample Size 
Calculations: Bayesian Methods

If the primary endpoint is a binary response, then it is the uncertainty in the 
estimation of this response that adversely affects sample size calculations. 
The context now is to interrogate sample sizes for which a superiority study 
is being planned and a control response pA had previously been observed. In 
the prospective trial being designed inference is to be made about the ‘true’ 
difference A  B.

The utility of Bayesian methods now is that they allow us to draw not only 
on retrospective data about the anticipated control response but also on our 
subjective belief regarding the response while accounting for the impreci-
sion in the initial estimates.

In context with the problem here the effect size (whether an odds ratio 
or an absolute risk difference) is assumed known so that the variance for 
the odds ratio and absolute risk difference can be estimated from (9.36) and 
(9.39), respectively, as before.
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For the given sample size what needs to be determined is the probability 
of observing a given control response pAi or greater for  given that pA1 has 
already been observed, that is, Prob( | )p pAi A1 .

For inference about an unknown binary parameter , what we are inter-
ested in is how our belief about  would change. If the prior is expressed 
in the density p( ) and if subsequently data x is observed then the posterior 
distribution is expressed in the density p( |x), where the Bayes rule for den-
sities is

 p( |x)  (x| ) p( ), (9.42)

where (x| ) is the likelihood function.
For binary data the Beta distribution can be used for the prior responses 

such that

 
PROBBETA p a b p pA A

a
A

b( , , ) ( ) ,1 11  (9.43)

where PROBBETA( )  is defined as a cumulative density distribution for a 
beta distribution. The Bayesian updating rules are now described. Although 
not directly comparable this chapter draws on the work of Johnson et al. 
(2004).

9.9.1 Prior Response

Prior values for
 

PROBBETA p a bpercA
( , , )0 0  (and the corresponding PpercA

 = 

BETAINV (perc, a0, b0)) could be derived as follows. For an informative prior 

we could use the mode (or most likely value) and a percentile to build a prior. 

For a Beta distribution the mode is defined by
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Hence, the a0 (and consequently b0) could be derived from

 
p BETAINV percentile a a mpercentile ( , ,[ ]/0 0 1 aa0 2)  (9.44)

if a percentile for the control response can be postulated. If we wished to use 
a non-informative prior, then a Jeffrey’s prior could be used such that

 
P BETAINV percpercA

( , . , . ).0 5 0 5  (9.45)

This Jeffrey’s prior has the advantage of being invariant with respect to 
transformations.
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9.9.2 Anticipated Response

The anticipated control response (and consequent variance) is defined as pA1
. 

This value is taken from an objective value observed in a previous clinical 
trial. The control response equates to an observed number of successes a1 
and failures b1.

9.9.3 Posterior Response

With the anticipated prior responses the posterior distribution can be calcu-
lated from the following result:

 
P BETAINV perc a a b bpercA

( , , )1 0 1 0  (9.46)

These values for P BETAINV perc a a b bpercA
( , , )1 0 1 0  can be used in (9.38) 

and (9.41) to obtain estimates of the sample size for an odds ratio and an 
absolute risk difference, respectively, accounting for the imprecision in the 
control response estimate.

9.9.4 Worked Example 9.7

Repeating Worked Example 9.6 in which an investigator wished to design a 
study in which the response anticipated on the control therapy was 20%. The 
effect size of interest is an odds ratio of 2.0 “in favour” of the control therapy 
with the investigator wishing to design the study with Type I and II errors 
fixed at 5% and 10%, respectively.

Now, again, suppose this estimate of the control response rate came from 
a trial with 50 patients receiving the control and the investigator wished to 
allow for this imprecision in the estimate of the control response rate in the 
estimation of the sample size.

9.9.4.1 Non-informative

If initially a non-informative prior was used, then the percentiles for our 
prior response would be estimated from (9.45). A plot of the prior is given 
in Figure 9.2a. The distribution of observed response would be estimated 
from P BETAINV percpercA

( , , )10 40  and is given in Figure 9.2b. Finally the 
posterior would be estimated from (9.46) as P BETAINV percpercA

( , . , . )10 5 40 5  
and is given in Figure 9.2c. As we have a non-informative prior the posterior 
and the observed response would virtually be the same, as illustrated in 
Figure 9.2d.

To calculate the sample size we would use (9.46) in (9.38), which gives an 
estimate of 354 patients. The sample size is as calculated previously when 
allowing for the imprecision in the sample variance in Worked Example 9.6, 
which is not surprising given that the posterior and the observed response 
are virtually the same.
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9.9.4.2 Sceptical Prior

Imagine now the investigator was sceptical regarding the control response 
being as high as 20% such that the belief was that the most likely response 
was 15% with at least 90% certainty that it was greater than 10%.

From (9.44) estimates of a0 and b0 of 7.899 and 40.094, respectively, are 
obtained. The prior for the percentiles for the control response would hence 
be P BETAINV percpercA

( , . , . )7 899 40 094 . Figure 9.3a gives an illustration of 
the prior distribution.

The observed response would still be P BETAINV percpercA
( , , )10 40  and 

is given in Figure 9.3b although with a slightly rescaled y axis com-
pared to Figure 9.2b. Finally the posterior would be taken from (9.46) as 
P BETAINV percpercA

( , . , . )17 899 80 094  and is given in Figure 9.2c. Figure 9.2d 
gives all three distributions together.

Hence, using (9.46) in (9.38) the estimate of the sample size is now 379, 
which is a little higher than before.

9.9.4.3 Optimistic

Now suppose the investigator is more optimistic about the control response, 
believing the most likely response to be 25%, and is at least 90% certain that 
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FIGURE 9.2 Plot of the prior, observed and anticipated responses for the control with a non-

informative prior.
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it was greater than 20%. From (9.44) estimates of a0 and b0 of 25.048 and 73.144, 
respectively, are obtained. Figure 9.4 gives an illustration of the different 
responses.

Hence, now using (9.46) in (9.38) a sample size estimate of 297 is calculated. 
This is less than the sample size calculated not allowing for impression in 
the variance.

Note here we have undertaken calculations using the odds ratio. Similar 
calculations could be done if calculations were based around an absolute 
difference in the responses. Here, though (in terms of the variance), an 
optimistic prior would be one for which the response is lower than 20%, 
and a pessimistic prior would be one for which the response is higher 
than 20%.

Key Messages

There are a number of approaches for calculating sample size 
when the primary endpoint is binary with the main deciding 
factor regarding which approach to use being the planned 
analysis.
The study design is relatively robust with respect to assump-
tions about the variance of the anticipated response as long as 
the anticipated response is within the range (0.3, 0.7).
Covariate adjustment has little effect on sample size calcula-
tions if the primary endpoint is binary.
Sample size re-estimation is relatively straightforward with a 
binary primary endpoint.
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10
Sample Size Calculations for Superiority 
Cross-over Clinical Trials with Binary Data

10.1 Introduction

When the data are paired, such as in a cross-over trial, there are two main 
summary measures that can be used: the difference in proportions and the 
odds ratio. This chapter concentrates on these two summary measures in 
considering sample size calculations. The methodologies are now discussed 
in detail.

10.2 Analysis of a Trial

For a cross-over trial with a binary primary endpoint the data could be sum-
marised as per Table 10.1 and analysed by the McNemar test

 

( )
~ ,

n n
n n
10 01

2

10 01
1
2

where n10  and n01  are the number of responses expected in cells ‘10’ and ‘01’, 
respectively. The data in the final column and final row of the table give the 
overall responses for each treatment. These overall responses are the out-
comes we may expect in a parallel group study.

In a cross-over trial only discordant responses are of interest for statistical 
comparisons (i.e. those subjects who respond ‘10’ or ‘01’). A large proportion 
of subjects are thus discarded in constructing a statistical test as the test is 
conditional on subjects being discordant. This is quite intuitive, though, as in 
a superiority trial concordant responses agree with the null hypothesis of no 
treatment differences. Thus, what we are determining is whether for those 
subjects who only respond to one treatment if this response is more likely to 
be in favour of one treatment over the other.
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10.2.1 Sample Size Estimation with the Population 
Effects Assumed Known

Table 10.1 can be rewritten in terms of proportions as per Table 10.2, where 

10 10n n/ , 01 01n n/ , 11 11n n/  and 00 00n n/  and p n nA A1/  and 
p n nB B1/ ; the trial can be summarised with an odds ratio defined as

 

10

01

.

 
(10.1)

This odds ratio is a conditional summary statistic, using just the discordant 
responses. A conditional odds ratio can be difficult to interpret. To assist in 
the interpretation the odds ratio can be approximated from the marginal 
totals (Royston, 1993),

  

Odds ratio =
p p
p p

A B

B A

( )

( )
,

1

1
 

(10.2)

where 10 1p pA B( ), and 01 1p pB A( ). Thus, the conditional odds ratio 
for a cross-over trial can be interpreted in terms of the odds ratio from a 
parallel group study (approximated from the marginal proportions). This is 
of particular use in the calculation of sample sizes as marginal totals could 
be used to estimate the conditional odds ratio, which in turn can be used to 
estimate the discordant sample size.

The discordant sample size nd  for a cross-over trial can be derived from 
(Royston, 1993; Julious, Campbell and Altman, 1999; Connett, Smith and 

TABLE 10.1

Summary of Hypothetical Cross-over Trial
 

Treatment B

1 0
 

Treatment A 1 n11 n10 nA1

0 n01 n00 nA0

nB1 nB0 n
 

TABLE 10.2

Summary of Hypothetical Cross-over Trial

 
Treatment B

1 0
 

Treatment A 1 11 10 pA

0 01 00 1 − pA

pB 1 − pB 1
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McHugh, 1987; Fleiss and Levin, 1988; Schesselman, 1982)
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(10.3)

which has performed well in simulations (Julious and Campbell, 1998). The 
result (10.3) could be considered useful as the sample size is defined only in 
terms of the effect size . There are no “unknowns” such as the anticipated 
proportion of responders on a given treatment.

Practically, therefore, a discordant sample size calculation could be estimated 
based around a clinically meaningful difference, and sufficient numbers of 
subjects could be recruited until this target discordant sample size is reached.

For budgetary and planning purposes there would need to be an estimate of the 
total sample size also, here the number of subjects needed to be enrolled to ensure 
a sufficient discordant sample size. To calculate the total sample size, the discor-
dant sample size is divided by the proportion expected to be discordant (Julious, 
Campbell and Altman, 1999; Connett, Smith and McHugh, 1987), that is,
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n

c
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01 10

.

 
(10.4)

Table 10.3 gives sample sizes for various odds ratios for (10.3).

TABLE 10.3

Discordant Sample Size for a 

Cross-over Trial with 90% Power and 

Two-Sided Significance Level of 5%
 

Odds Ratios Sample Size
 

0.05 8

0.10 12

0.15 16

0.20 20

0.25 25

0.30 32

0.35 42

0.40 53

0.45 69

0.50 91

0.55 121

0.60 164

0.65 230

0.70 334

0.75 511

0.80 848

0.85 1,595

0.90 3,791

0.95 15,983
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10.2.1.1 Worked Example 10.1

In Chapter 9 we introduced a trial to assess the effects of buccal midazo-
lam that was designed as a parallel group trial. Suppose the trial could 
be run as a cross-over trial. Table 10.4 gives a summary of the antici-
pated treatment responses for the two treatments. An odds ratio of 2 is 
of interest and we wish to have 90% power at the two-sided 5% level of 
significance.

The marginal totals in Chapter 9 and here are used to complete the table. 
Using (10.3) an estimate of the discordant sample size for the trial would be

 

n
Z Z
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2

1 2

1

1 96 2 1 2 1 282 2

2 1
90 36

2

2

. )

( )
. .

The discordant sample size required is thus 91 subjects, which could be used 
for recruitment purposes (i.e. we would enrol sufficient numbers of patients 
until we observed 91 that were discordant).

We could have instead used Table 10.3. An odds ratio of 2 is equivalent 
(ignoring the sign of the effect) to an odds ratio of 0.5. From Table 10.3 we also 
get a sample size of 91 subjects.

For planning purposes we need to have an estimate of the total sample 
size, which we will estimate from (10.4). The total sample size is thus 91/ 
0.48 = 189.6 or 190 subjects.

10.2.1.2 Worked Example 10.2

An investigator wishes to design a study in which the marginal response 
anticipated on the control therapy is 40%. The effect of interest is 2.0 in favour 
of the control therapy, and the investigator wishes to design the study with 
Type I and II errors fixed at 5% and 10%, respectively.

An anticipated control response of 40% and an odds ratio of 2.0 would 
equate to a response of 25% on the investigative therapy. Hence, the mar-
ginal responses, as per Table 10.5, can be completed, as can the remain-
ing entries in the table, through multiplying the marginal totals. From this 

TABLE 10.4

Summary of Anticipated Responses for Worked Example
 

Buccal Midazolam

1 0
 

New treatment 1 0.40 0.32 0.72

0 0.16 0.12 0.28

0.56 0.44
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table it is evident that the odds ratio defined through (10.1) and (10.2) are the 
same.

The discordant sample size required would be 91 subjects, with the total 
sample size estimated as 203 subjects.

10.2.2 Comparison of Cross-over and Parallel Group Results

The sample size for one arm in a parallel group trial npg  can be estimated 
from (10.5) (Campbell, Julious and Altman, 1995; Whitehead, 1993)
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(10.5)

where 0  and 1  are the responses across treatments for outcomes 0 and 1, 
respectively, such that 1 2( )/A B  and 1 01 . On the face of it (10.3) 
and (10.4) are quite dissimilar to (10.5). However, (10.4) can be rewritten as
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and in turn rewriting 10  and 01  in terms of the marginal totals 
( 10 1A B( )  and 01 1B A( ))  (10.6) can be approximated by
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Also, through the following results A B B A( ) ( ) ( )1 1 10
2

0
2 and 

A B B A( ) ( ) ( )1 1 2 1  (10.7) can be rewritten as
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(10.8)

TABLE 10.5

Summary of Anticipated Responses for Worked Example
 

Investigative

1 0
 

Control 1 0.10 0.30 0.40

0 0.15 0.45 0.60

0.25 0.75 1
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Returning to the case of a parallel group trial in which the odds ratio (OR) 
is defined as

 
OR A B B A( ( ))/( ( ))1 1

and remember

 

log( )
( )

,OR
1

A B

0 0  
(10.9)
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Substituting (10.9) and (10.10) back into (10.8) we get
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and the sample size formula for one arm in a parallel group study. Thus, the 
sample size required for a cross-over trial is approximately equivalent to 
that for one arm of a parallel group trial. An alternative way of phrasing this 
would be to say that the sample size required is half that required in total for 
a parallel group trial.

The practical application of this result is that when designing a clinical 
trial we could use the marginal effects expected for the respective treat-
ments and consequently the effect sizes anticipated if the trial was a par-
allel group investigation. These effects could then be used in the parallel 
group formula—taking the one arm sample size to be the total sample size. 
Working with the marginal totals may make it easier to formulate effects, 
and consequently trials should be easier to design.

In the rest of this chapter the approach of using the sample size formula 
for one arm of a parallel group trial as the total sample for a cross-over trial 
is the approach applied.

Note also that the conditional odds ratio is not the same as the marginal 
odds ratio but can be an approximation to “all things being equal”.

10.2.2.1 Worked Example 10.3

In Worked Example 10.2 a sample size was calculated for a study based on 
the marginal totals. The sample size was estimated to be 203 patients in total. 
If instead we had used (10.5) the total sample size would be 200 patients.
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Note that there is a little rounding here as 91/0.45 = 203 while 90.36/0.45 = 
201. Either way, we can see that the two approaches give quite similar sample 
sizes.

If we wished to base the sample size purely on the discordant sample size, 
recruiting until the discordant sample size is reached, then the sample size 
would be (using the result of 200 per arm) 200  (0.30  0.15) or 90 patients.

10.2.2.2 Worked Example 10.4

An investigator wishes to design a study in which the anticipated response 
on the control therapy is 50%. The effect of interest is an odds ratio of 1.5 
in favour of the investigative therapy, and the investigator wishes to design 
the study with Types I and II errors fixed at 5% and 10%, respectively. From 
Table 10.6 (taken from Chapter 9) we can see that the total sample size 
required would be 518 patients.

With a response rate of 50% anticipated on the control an odds ratio of 1.5 
would equate to an investigative response rate of 60% or a 10% increase. 

TABLE 10.6

Total Sample Size Estimates for a Cross-over Trial Using Parallel 

Group Methodology for Various Expected Outcome Responses for a 

Given Treatment A and Odds Ratios for a Two-Sided Type I Error 

Rate of 5% and 90% Power
 

Odds Ratio

A 1.25 1.50 1.75 2.00 3.00 4.00
   
0.05 8,002 2,212 1,072 650 208 110

0.10 4,278 1,200 588 362 122 68

0.15 3,058 868 432 268 94 56

0.20 2,468 710 356 224 82 50

0.25 2,132 620 316 200 76 46

0.30 1,926 566 290 186 72 44

0.35 1,800 534 276 180 70 44

0.40 1,726 518 270 176 70 46

0.45 1,692 512 270 176 72 46

0.50 1,694 518 274 180 76 50

0.55 1,730 532 284 188 80 52

0.60 1,804 560 300 200 86 56

0.65 1,924 602 326 218 94 62

0.70 2,106 664 360 242 106 70

0.75 2,382 756 412 278 122 80

0.80 2,820 900 494 334 146 98

0.85 3,574 1,150 632 430 190 126

0.90 5,112 1,654 914 622 276 184

0.95 9,780 3,182 1,766 1,202 536 360
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If we had used (10.3), then we would have estimated the discordant sample 
size to be 258.6 or 259 subjects. The total sample size by (10.4) would be 
259/0.55 = 471 subjects.

10.3 Analysis of a Trial Revisited

As well as ignoring concordant data, the McNemar test ignores the fact that 
subjects are assigned to different sequences, that is, either AB or BA for a two-
period cross-over trial, and thus ignores any possible existing period effect. To 
allow for any possible period effect Table 10.1 can be re-written as sequence 
differences as in Table 10.7. The numbers in Table 10.7 can, in turn, be rewritten 
in terms of Table 10.8 as a1 + a2 = n10 , b1 + b2= n01  and nAB  + nBA  = nd.

This approach is analogous to the period-adjusted t test (Senn, 1993). 
Sequence differences can be used to give a period-adjusted estimate of the 
odds ratio by taking the log odds ratio for sequence B-A away from A-B and 
dividing by 2

 Log  = (log AB − log BA )/2 = 

 (log a1/b1 − log b2/a2)/2 = 0.5 log(a1a2/b1b2) = 0.5 log ORp, (10.12)

where ORp is the period-adjusted odds ratio. From (10.12) it is therefore evi-
dent that the non-period odds ratio is equivalent to the square-rooted odds 

TABLE 10.7

Summary of Period-Adjusted Analysis of 

Hypothetical Cross-over Trial
 

Treatment Difference

Sequence Difference −1 1 Total
 

A-B a1 b1 nAB

B-A b2 a2 nBA 
 

TABLE 10.8

Summary of Period-Adjusted Analysis of 

Hypothetical Cross-over Trial
 

Treatment Difference

Sequence Difference −1 +1
 

A-B pa1
pb1

B-A pb2

pa2

p 1 p 1
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ratio from the period-adjusted analysis. Thus, ORp , and hence a test 
statistic for the period-adjusted test can be derived

 

log( )

var(log( ))
~ .

2

1
2

 (10.13)

Therefore, (10.13) is asymptotically equivalent to the McNemar test as well as 
to alternative period-adjusted tests such as the Mainland-Gartt test and the 
Prescott test (Senn, 1993).

The period-adjusted approach described here is an extension of the two-
group analysis described by Whitehead (1993) and McCullagh (1980). The 
period-adjusted analysis can be undertaken via logistic regression using 
the sequence difference as the outcome with sequence in the model. The log 
odds ratio derived from this analysis would be the same as (10.12), and the 
test statistic would be (10.13). To attain an estimate of the odds ratio and con-
fidence interval equivalent to the McNemar test you must exponentiate and 
then square root the log(ORp) from the analysis.

If a period-adjusted analysis were undertaken on data for which there is 
no period effect, then there would be no effect on the inference. The converse 
is not true. Imagine there are two treatment sequences AB and BA with the 
odds ratios for each treatment sequence defined, respectively, as

 
AB BA

ka
b

k
kb
a

k1

1

2

2

and ,

where k (k < 1.00) is the known period effect. It is therefore evident that for 
the special case of a a1 2  and b b1 2  an unbiased estimate of the odds ratio 
is obtained no matter what the value of the odds ratio and k. However, if the 
period difference is ignored such that the data is simply pooled across the 
sequences, then the naïve estimate of the odds ratio, assuming k and are 
known, is defined as

 
p

k k k
k k k
( ) ( )

( ) ( )
.

1

1  
(10.14)

The bias estimated from (10.14) is given in Table 10.9 for different values of 
k. It is evident therefore that by ignoring a possible period effect the results 
are becoming biased towards the null hypothesis, with the bias increasing 
with increasing effect size (in absolute terms but not relatively). Overall, 
though, except for large period differences, the bias is relatively small.

As with previous chapters how you plan to analyse a trial will influence 
how you calculate the sample size. If a period-adjusted analysis is planned, 
then an estimate of the odds ratio from a trial with such a trial would be opti-
mal. However, the bias due to ignoring the possible effect of period is not great, 
so a recommendation is to ignore the effect of period and stick to the relatively 
straightforward sample size calculations described using (10.3) and (10.5).
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We do not mention period-adjusted sample size calculations again in 
this book.

10.4 Sensitivity Analysis about the Estimates of the 
Population Effects Used in the Sample Size Calculations

Following from the arguments on equating the one-arm sample size of a 
parallel trial with that of the total sample size of a cross-over study, the meth-
odology described in Chapter 9 for parallel group studies can be adapted to 
assess the sensitivity of a cross-over trial.

To investigate sensitivity of the study design to the imprecision of the 
estimate of control marginal response rate a range of plausible values could 
be constructed through a 95% confidence interval. The power could then 
be assessed for the two tails of this confidence interval, with the effect size 
fixed, by using the following, which is (10.5) rewritten in terms of power

 

1 1 6
2

0

1

3
1n OR p

i =

i(log ) / Z / .2

 

(10.15)

10.5 Calculations Taking Account of the Imprecision 
of the Estimates of the Population Effects 
Used in the Sample Size Calculations

As with assessing the sensitivity of a study to calculate the total sample size 
of a cross-over study to account for the imprecision in the variance estimate 
used in the sample size calculations, the results from the parallel group case 

TABLE 10.9

Bias in Estimated Odds Ratio through Ignoring Possible Period Effects
 
Odds Ratio

  k 1.00 1.25 1.50 1.75 2.00 3.00 4.00
 

0.50 1.000 1.220 1.435 1.647 1.857 2.684 3.500

0.60 1.000 1.233 1.463 1.691 1.918 2.818 3.711

0.70 1.000 1.241 1.481 1.721 1.959 2.908 3.853

0.80 1.000 1.247 1.493 1.738 1.984 2.963 3.941

0.90 1.000 1.249 1.498 1.747 1.996 2.992 3.987

1.00 1.000 1.250 1.500 1.750 2.000 3.000 4.000
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can be extended to give
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which can be iterated on n until the appropriate power has been reached.

10.6 Calculations Taking Account of the Imprecision 
of the Estimates Used in the Sample Size 
Calculations: Bayesian Methods

Bayesian methods described for parallel group trials in Chapter 9 can also 
be extended to studies with a cross-over design. A posterior distribution 
for a control response can be estimated, and (10.16) can be used for sample 
size estimation.

 Key Messages

Marginal totals can be used to estimate the responses in a 
crossover trial to assist in the sample size calculations.
Sample size calculations for one arm of a parallel group trial 
can be used as an estimate of the total sample size for a cross-
over study.
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11
Sample Size Calculations for 
Non-inferiority Trials with Binary Data

11.1 Introduction

Before describing sample size calculations for non-inferiority trials we recall 
the definitions of the null (H0) and alternative (H1) hypotheses:

H0:  A given treatment is inferior with respect to the risk response
( )A B .

H1:  The given treatment is non-inferior with respect to the risk 
response ( A B).

These hypotheses can be written in terms of a clinical difference d (Committee 
for Proprietary Medicinal Products [CPMP], 2000; Chen, Tsong and Kang, 
2000; Chan, 2003)

 
H :0 A B d

 
H :1 A B d

where d is the non-inferiority margin (Julious, 2004d; Chen, Tsong and Kang, 
2000; Committee for Medicinal Products for Human Use [CHMP], 2005).

The standard approach is to test the null hypothesis using a one-sided test 
at the 2.5% level of significance (International Conference on Harmonisation 
[ICH] E9, 1998). Operationally non-inferiority is tested through constructing 
a 95% confidence interval and declaring non-inferiority if the appropriate 
(lower or upper) bound excludes the limit d; this is how most non-inferiority 
trials are actually analysed (Julious, 2004d).

The issue to highlight in the context of this chapter is that under both 
the null and alternative hypotheses there is a non-zero difference between 
treatments; this has implications in the estimation of the variance. For 
non-inferiority trials with a Normal response as discussed in Chapter 6 we 
also have non-zero difference under the null and alternative hypotheses, but 
we can assume the variance remains constant for both hypotheses. Similarly 
for superiority trials with binary data we have different variances under 
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the null and alternative hypotheses, but the estimation of these variances 
is straightforward. For non-inferiority trials there are issues with variance 
estimation that are highlighted in the chapter.

11.2 Choice of Non-inferiority Limit

The choice of non-inferiority (and equivalence) limit was discussed gener-
ally in Chapters 1 and 2. However, it is worth reinterrogating this issue for 
binary data as it is one of the few areas in which there is regulatory guid-
ance. The guidance is for the antimicrobial therapeutic area in which active 
controlled trials are the norm, although the issues raised are generic to other 
therapeutic areas.

Table 11.1 gives the non-inferiority margins for different response rates 
as recommended by CPMP (2004a) and the Food and Drug Administration 
(FDA; 1992). The FDA guidelines are redundant now, but they do raise inter-
esting points.

What is evident from Table 11.1 is that whilst the CPMP recommends a flat 
equivalence margin the FDA margins are a step function according to the 
anticipated control response rate. Table 11.1 is also figuratively described in 
Figure 11.1.

It is when considering non-inferiority trials (and equivalence trials in 
Chapter 12)  that we can see an advantage of working on the odds ratio scale 
as working with a step function does present problems when working with 
absolute differences. Suppose we designed a trial based on an anticipated 
active response rate of 78% and a margin of 20%, but we actually observed 
82%. This brings us over into the next margin level of 15%.

Working on the odds ratio scale avoids the problems associated with a 
stepped non-inferiority margin. This is because on the odds ratio scale a 
fixed margin would equate to different margins on the absolute risk scale. 
This has been recognised by a number of authors. Garrett (2003) recom-
mended using a margin of 0.5 on the odds ratio scale, whilst Senn (1997) 
recommended a margin of 0.55 and Tu (1998) a margin of 0.43. However, a 

TABLE 11.1

Non-inferiority Margins for Different 

Control Response Rates
 

Non-inferiority Margin (%)

Response Rate (%) FDA CPMP
 

≥90 −10 10

80–89 −15 10

70–79 −20 10
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margin of 0.47 would be one that seems to perform best. The relative merits 
of these margins can be seen in Table 11.2 and Figure 11.2.

Table 11.2 gives the equivalent difference on the proportional scale for dif-
ferent odds ratios and control response rates. The margin of 0.55 is the most 
conservative and would guarantee that the difference is no greater than 15% 
no matter what the control prevalence is, while that of 0.50 although less 
conservative has the advantage of being a round number. Figure 11.2 figura-
tively demonstrates these points as a repeat of Figure 11.1 with the margins 
of 0.50 and 0.43 now included.

–0.25

–0.20

–0.15

–0.10

–0.05

0.00

0.75 0.80 0.85 0.90 0.95

Comparator Response Rate

CPMP

FDA

FIGURE 11.1 Graphical illustration of CPMP and FDA non-inferiority limits.

TABLE 11.2

Differences on the Proportional Scale That Are Equivalent to Different Odds 

Ratios for Various Anticipated Expected Responses on One Treatment Arm
 

Odds Ratio

pA 0.40 0.45 0.47 0.50 0.55 0.60
 
0.95 0.066 0.054 0.051 0.045 0.037 0.031

0.90 0.117 0.098 0.091 0.082 0.068 0.056

0.85 0.156 0.132 0.123 0.111 0.093 0.077

0.80 0.185 0.157 0.147 0.133 0.113 0.094

0.75 0.205 0.176 0.165 0.150 0.127 0.107

0.70 0.217 0.188 0.177 0.162 0.138 0.117

0.65 0.224 0.195 0.184 0.169 0.145 0.123

0.60 0.225 0.197 0.187 0.171 0.148 0.126

0.55 0.222 0.195 0.185 0.171 0.148 0.127

0.50 0.214 0.190 0.180 0.167 0.145 0.125
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11.3 Parallel Group Trials Sample Size with 
the Population Effects Assumed Known

11.3.1 Absolute Risk Difference

The issue in calculating the sample is that under both the null and alternative 
hypotheses there is a non-zero difference between treatments. Generally, the 
sample size can be thought of in terms

 

n
Z Z

A

( 1 1Variance under Null Variance undder the Alternative)

(( ) )
,

2

2
A B d

  
  (11.1)

where Z1  is multiplied by the variance under the null hypothesis, and Z1  
is multiplied by the variance under the alternative hypothesis. Now (11.1) 
can be thought of in terms of
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Z Z
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(11.2)

where A  and B  are estimates of the responses on treatment under the null 
hypothesis used to estimate the variance under this hypothesis, that is,
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(11.3)
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FIGURE 11.2 Graphic illustration of CPMP and FDA non-inferiority limits on the proportional 

scale for fixed odds ratios.
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Now, for non-inferiority trials we can have that A B ; that is, the two 
treatments do not have an equal response. As the estimates of A  and B  
affect the estimate of the variance the definition of the null hypothesis hence 
influences the variance under this hypothesis. There are a number of ways 
of estimating (11.3); three are now discussed.

11.3.1.1 Method 1: Using Anticipated Responses

The first method of estimating the variance under the null hypothesis is sim-
ply to replace A  and B  with anticipated estimates of the response, A  and 

B , respectively (Dunnett and Gent, 1977; Farrington and Manning, 1990). 
Hence, the variance under the null hypothesis becomes

 

A A

A

B B

Bn n
( ) ( )

.
1 1

 

(11.4)

Hence, for the special case of an equal sample size between groups (i.e. n nA B) 
a direct estimate of the sample size can be obtained from (Dunnett and Gent, 
1977)
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(11.5)

where A  is the assumed proportion of responses expected in subjects on 
treatment A, and B is the assumed proportion of responses in subjects on 
treatment B.

11.3.1.2 Method 2: Using Anticipated Responses in 
Conjunction with the Non-inferiority Limit

The second method is to estimate A  and B  from (Dunnett and Gent, 1977)

 A A B B A Bd d( ) ( ) ,/ /2 2and
 (11.6)

where d is the non-inferiority limit. Hence, (11.6) can be applied to the esti-
mate of the variance (11.3), and an estimate of the sample size can be obtained 
from (11.2).

For (11.2) to be used the following inequality must hold (Farrington and 
Manning, 1990):

 
max{ , } min{ , }.d d d dA B 2

 (11.7)

The equation (11.7) can be violated, but it holds for all sensible values for d, 

A  and B ; that is, if we set d = 0.20 when we expected a response rate of 0.90 
for both regiment A and B it will be violated, but this is not a logical limit for 
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such a high response rate. For d = 0.10, a more sensible limit, (11.7) would not 
be violated.

11.3.1.3 Method 3: Using Maximum Likelihood Estimates

The third method is to use maximum likelihood estimates for pA  and pB  
(Farrington and Manning, 1990; Miettinen and Nurminen, 1985; Koopman, 
1984) defined, respectively, as

 
A B Au w

b
a

d2
3 1cos( ) and

  
(11.8)

to enter into (11.3) where d d dA1 1( ) , c d d bA A B
2 2 1 2( ) , (  

A B d3 ), a = 2, u v b a c asign( ) ( ) ( ) ( )2 29 3 , w v u[ cos ( )]/1 3 3 and 

v b a bc a d a3 3 2
127 6 2( ) ( ) ( ) ( ) . With (11.8) and (11.3) an estimate of the 

sample size can be estimated from (11.2).

11.3.1.4 Comparison of the Three Methods of Sample Size Estimation

As evidenced by their descriptions the three methods for estimating the 
variances under the null hypothesis are markedly different, and as a conse-
quence they give different estimates for the sample size. The differences are 
not marked except for high response rates—greater than 85%. Method 3 is 
the most conservative approach, while Method 1 is the least conservative.

This book concentrates on using Method 1 as it is consistent with the 
approach described for superiority trials in Chapter 9. As discussed in this 
chapter if there are question marks with respect to the assumptions in the 
sample size calculations, then these would need to be investigated.

Table 11.3 gives sample sizes for Method 1 for a finite range of responses 
for reference.

11.3.2 Odds Ratio

For non-inferiority studies the variance of the measure of effect must satisfy

 

Var S
d

Z Z
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1 1
2

 
(11.9)

and the variance about the log odds ratio can be approximated by 
(Whitehead, 1993)
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(11.10)
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TABLE 11.3

Sample Sizes for a Non-inferiority Study Estimated from Method 1 for 90% Power 

and a Type I Error Rate of 2.5%

 

pA pB Limit
Sample 

Size πA πB Limit
Sample 

Size
 

0.70 0.70 0.05 1,766 0.80 0.70 0.15 1,556

0.10 442 0.75 0.10 1,461

0.15 197 0.15 366

0.20 111 0.80 0.05 1,344

0.75 0.05 418 0.10 337

0.10 186 0.15 150

0.15 105 0.85 0.05 303

0.20 67 0.10 135

0.80 0.05 173 0.15 76

0.10 98 0.90 0.05 117

0.15 63 0.10 66

0.20 44 0.15 43

0.85 0.05 89

0.10 57 0.85 0.75 0.15 1,324

0.15 40 0.80 0.10 1,209

0.20 29 0.15 303

0.90 0.05 51 0.85 0.05 1,072

0.10 36 0.10 268

0.15 26 0.15 120

0.20 20 0.90 0.05 229

0.10 102

0.75 0.70 0.10 1,671 0.15 58

0.15 418

0.20 186 0.90 0.85 0.10 915

0.75 0.05 1,577 0.90 0.05 757

0.10 395 0.10 190

0.15 176

0.20 99

0.80 0.05 366

0.10 163

0.15 92

0.20 59

0.85 0.05 148

0.10 83

0.15 54

0.20 37

0.90 0.05 73

0.10 47

0.15 33

0.20 24
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where i  is the average response across each outcome category [ 1  
( )/A B 2  and 1 01 ]. By equating (11.9) with (11.10) the sample size 
can be estimated from
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where d in this instance is the non-inferiority limit on the log odds ratio scale. 
In this chapter appropriate values were mentioned as log(0.43), log(0.50) or 
log(0.55) as well as log(0.47); Table 11.4 gives sample sizes from (11.11) for these.

11.3.2.1 Worked Example 11.1

An investigator wishes to design a trial in which the anticipated response 
rate on the active control is 85%. The investigator also expects an 85% 

TABLE 11.4

Sample Sizes for Different Non-inferiority Limits on the Odds Ratio Scale 

and Anticipated Responses for 90% Power and Type I Error of 2.5%
 

Margin

pA Odds Ratio 0.43 0.47 0.50 0.55
 

0.80 0.7 498 745 1,044 2,031

0.8 319 435 557 876

0.9 234 302 369 525

1.0 185 231 274 368

1.1 154 187 218 282

1.2 132 158 181 228

1.4 105 122 137 167

0.85 0.7 612 915 1,282 2,496

0.8 396 539 690 1085

0.9 292 377 460 655

1.0 232 290 344 462

1.1 194 236 275 355

1.2 167 200 230 289

1.4 133 156 175 212

0.9 0.7 848 1,268 1,778 3,460

0.8 553 753 965 1518

0.9 411 531 648 923

1.0 328 410 487 654

1.1 275 336 391 505

1.2 239 286 328 412

 1.4 191 223 251 304
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response rate on the investigative therapy. Using an odds ratio of 0.50 for 
the non-inferiority limit (11.11) gives the sample size as 344 patients per 
arm. In comparison working on the absolute risk scale, with the same antici-
pated responses but with a non-inferiority limit of 15%, we require just 120 
patients per arm.

Note here that although the sample sizes seem quite disparate for the 
odds ratio scale compared to the proportional scale, we must bear in 
mind that we are not comparing like with like. For an anticipated control 
response of 85%, an odds ratio of 0.5 equates to an 11.1% difference, a little 
short of 15%.

If we used a 10% non-inferiority limit then the sample size would increase 
to 268 patients per arm.

11.3.3 Superiority Trials Revisited

In Chapter 6 it was discussed how, instead of setting up a non-inferiority 
study, we could set up a superiority study but with a significance level 
greater than the nominal 2.5%. This would have the benefit of ensuring that 
the observed active response rate is greater than the control ( )B A  even if 
a lower bound of a 95% confidence interval passes zero.

If a study was being set up as a superiority study the sample size for a 
given power and one-tailed level of significance can be estimated from
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where ( )/A B 2. Note that under the superiority null hypothesis 

A B , so we use  (a common response) to estimate the variance under 
the null hypothesis. Sample sizes using (11.12) are given in Table 11.5. The 
sample sizes are given for different control response rates and different 
improvements on the investigative treatment, assuming B A.

11.3.4 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

As highlighted in Chapter 9 for superiority trials, it is the response rate on con-
trol pA, an estimate of A, to which the study design is sensitive. This response 
rate in turn feeds into the estimate of variance used in the calculations.

Non-inferiority studies may be particularly sensitive to assumptions 
about the control response both as the control response is often antici-
pated to be quite high (which has an impact on the variance estimate) and 
because a high control response rate may make showing non-inferiority 
more difficult (it may narrow the effect the investigative treatment has over 
the control).
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TABLE 11.5

Sample Sizes for a Superiority Study for Different Significance Levels for 90% 

Power for Various Anticipated and Control Response Rates
 
Significance Level

pA pB - pA 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
 

0.50 0.025 8,402 6,848 5,920 5,254 4730 4296 3928 3606

0.050 2,096 1,708 1,476 1,310 1180 1072 980 900

0.075 928 756 654 580 522 474 434 398

0.100 520 424 366 324 292 266 242 222

0.55 0.025 8,276 6,746 5,832 5,174 4658 4232 3868 3552

0.050 2,054 1,674 1,448 1,284 1156 1050 960 882

0.075 904 738 638 566 510 462 422 388

0.100 504 410 354 314 284 258 236 216

0.60 0.025 7,982 6,506 5,624 4,990 4492 4082 3732 3424

0.050 1,970 1,606 1,388 1,232 1108 1008 920 846

0.075 862 704 608 540 486 442 404 370

0.100 478 388 336 298 268 244 224 204

0.65 0.025 7,520 6,128 5,298 4,702 4232 3846 3516 3226

0.050 1,844 1,502 1,300 1,152 1038 942 862 792

0.075 802 654 566 502 452 410 374 344

0.100 440 358 310 276 248 226 206 190

0.70 0.025 6,888 5614 4854 4,308 3878 3522 3220 2956

0.050 1,676 1,366 1,180 1,048 944 856 784 718

0.075 722 588 510 452 406 370 338 310

0.100 394 320 278 246 222 202 184 168

0.75 0.025 6,090 4,964 4,292 3,808 3428 3114 2846 2614

0.050 1,466 1,194 1,032 916 824 750 684 628

0.075 624 508 440 390 352 320 292 268

0.100 336 274 236 210 188 172 156 144

0.80 0.025 5,122 4,176 3,610 3,204 2884 2620 2394 2198

0.050 1,212 988 854 758 682 620 568 520

0.075 508 414 358 318 286 260 238 218

0.100 266 218 188 166 150 136 124 114

0.85 0.025 3,988 3,250 2,810 2,494 2244 2040 1864 1712

0.050 918 748 648 574 518 470 430 394

0.075 372 304 262 232 210 190 174 160

0.100 188 154 132 118 106 96 88 80

0.90 0.025 2,684 2,188 1,892 1,678 1512 1372 1254 1152

0.050 582 474 410 364 328 298 272 250
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As with superiority trials the sensitivity of the non-inferiority study design 
to the control response rate can be investigated through construction of a 
95% confidence interval. The power could then be assessed at the two tails of 
the confidence interval.

The following result for the absolute difference could be used to investi-
gate the sensitivity of a study. Note that in this formula the study design will 
be sensitive to both the control response rate and the variance,
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The equivalent result to investigate the sensitivity of study about an odds 
ratio is

 

1 1 6
2

1

2

3n OR d pA

i =

(log( ) ) / Z1 .

 

(11.14)

11.3.4.1 Worked Example 11.2

Suppose that in Worked Example 11.1 the control response rate was assessed 
from a previous study in 100 patients. It was assumed that the investigative 
response rate is correct at 85% with a confidence interval that indicates that a 
plausible range for the control response is between 78% and 92%.

Table 11.6 gives a breakdown of the sensitivity of the study design to the 
estimate of the control response rate. For this example it is the upper point of 
the confidence interval to which the study is sensitive.

TABLE 11.6

Sensitivity Analysis for Non-inferiority

a. Absolute Difference

95% Confidence Interval

Observed Lower Upper
 

Control response 0.85 0.78 0.92

Non-inferiority margin 0.15 0.15 0.15

Investigative response 0.85 0.85 0.85

Power 90% >90% 11%

b. Odds Ratio Scale

95% Confidence Interval

Observed Lower Upper
 

Control response 0.85 0.78 0.92

Investigative response 0.85 0.850 0.850

Power 90% >90% 3%
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For this worked example therefore we have designed a study with 90% 
power based on a previously observed control response rate of 85%. If the 
true control response rate is nearer to 78% (which is plausible based on the 
confidence interval), then we would have greater than the nominal power 
set a priori. However, if the control response was truly 92%, then our power 
could be as low as 3%.

Note in this example when assessing the sensitivity it was assumed 
that if we observed a control response rate lower or higher than expected, 
then the original non-inferiority would still be used. However, if a higher-
than-expected control response rate was observed, then this may not be 
appropriate.

11.3.5 Absolute Risk Difference versus Odds Ratios Revisited

Calculations on the odds ratio scale are overly sensitive, compared to the 
absolute difference, to assumptions around the variance. In fact this is a 
function of the properties of the odds ratio—the fact that a fixed odds ratio 
would equate to smaller and smaller differences as the control response gets 
greater. In comparison on the absolute difference scale the margins are rela-
tively fixed (albeit stepped) such that the same margin could be used, 10%, 
independent of the anticipated response.

Which statistical analysis, and consequent sample size calculation, to use 
depends on the robustness of our assumptions. If it is reasonable to have 
relatively fixed margins, then we can work completely on the absolute risk 
scale. If we wish to have more flexible margins then we should work on the 
odds ratio scale.

In truth, however, there is no generic answer regarding which scale to 
use. For example an anticipated response of 90% raises far greater ques-
tions (should the margin narrow if a response rate greater than 90% is 
observed?) than one of 80%. Thus, the decision regarding most calculations 
must be undertaken on a case-by-case basis with a thorough investigation 
made of the sensitivity of one’s calculations to the assumptions inherent 
in them.

11.3.6 Calculations Taking Account of the Imprecision 
of the Estimates of the Population Effects 
Used in the Sample Size Calculations

As described in Chapter 9 for superiority trials, using appropriate confi-
dence interval methodology around the observed control response rate pA, the 
power and, hence iteratively, the sample size can be calculated using numeri-
cal methods. By extending this methodology the power for a non-inferiority 
trial, in which the absolute risk difference is of interest, can be estimated 
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from the result
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The equivalent calculation for a non-inferiority study design around the 
odds ratio would be estimation from
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Consequently the sample can be estimated through iteration; that is, for each 
sample size we can estimate the power of the study, and we iterate on the 
sample size until the requisite power is reached.

11.3.6.1 Worked Example 11.3

Suppose that the investigator wishes to revisit the calculation from Worked 
Example 11.1 to allow for the fact that the control response rate was esti-
mated from 100 patients. Repeating the sample calculations on the absolute 
difference scale decreases the size to 122 patients per arm. This is a sample 
size two greater than the original calculation.

11.3.7 Calculations Taking Account of the Imprecision of the Estimates 
Used in the Calculation of Sample Sizes: Bayesian Methods

The percentiles for a posterior control response can be calculated as described 
in Chapter 9. From these percentiles (11.15) and (11.16) could be used to esti-
mate the sample size allowing for the imprecision in the estimate of the con-
trol response rate (Julious, 2004c).

It is best to highlight the points through a worked example.
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11.3.7.1 Worked Example 11.4

With a non-informative prior, a1 = 85, b1 = 15 and a0 = 0.5 and b0 = 0.5. The 
distributions of the different responses are given in Figure 11.3. The sample 
size is estimated to be 122 patients per arm. This is the same as calculated in 
Worked Example 11.3.

With a more pessimistic prior, the most likely response is 80% with 90% 
certainty that it is greater than 75%, a1 = 85, b1 = 15 and a0 = 106.304 and b0 = 
27.326. The distributions for the different responses are given in Figure 11.4. 
The sample size as a result is increased to 139 patients per arm.

With a prior that the control response rate observed is about right, the most 
likely response is 85% with 90% certainty that it is greater than 80%, a1 = 85, 
b1 = 15 and a0 = 98.716 and b0 = 18.244. The distributions for the responses 
are given in Figure 11.5. The sample size is estimated to be 122 patients per 
arm—the same as with a non-informative prior.

11.3.8 Calculations Taking Account of the Imprecision of the 
Estimates of the Population Effects with Respect to 
the Assumptions about the Mean Difference and the 
Variance Used in the Sample Size Calculations

When we are designing a non-inferiority study the imprecision in the risk 
difference as well as the variance may be of importance. This is particularly so 
for non-inferiority studies (and equivalence studies described in Chapter 12) 
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FIGURE 11.3 Prior, observed and posterior responses for a non-informative prior.
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FIGURE 11.4 Prior, observed and posterior responses for a pessimistic prior.
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FIGURE 11.5 Prior, observed and posterior responses for an optimistic prior.
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in which the mean response, assessed by pA, feeds into the assumptions 
about both the risk difference and the variance.

To allow for the imprecision in the risk difference and variance we could 
use numerical methods to calculate the sample size on the absolute differ-
ence scale and obtain
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Note that in this instance, in contrast to non-inferiority calculations already 
discussed, a number of issues also need to be considered:

1. The investigative response rate pB remains assumed fixed, calcu-
lated from the initial pA but not from individual ppercA

.

2. Following from issue 1, for instance when p pperc BA
 exceeds the 

non-inferiority bound, then the power for this percentile (to be 
averaged across for power calculation) is set to 0.

The equivalent calculation for a non-inferiority study designed around the 
odds ratio would be

1
1

0 998
0 5

1
2

1

2

.
.

(log )n OR d pA perc

i =

pperc

A pern OR

3
16/

(log

Z

cc

i =

percd p2

1

2

0 001
31 6) /( . ) ZZ1

0 001perc .

00 998.

.

 
  (11.18)

As the odds ratio does not suffer from the issues of stepped non-in-
feriority bounds, the calculations are relatively more straightforward. 
However, the following two points should be considered similar to the 
proportional difference:

1. The investigative response rate pB remains assumed fixed calcu-
lated from the initial pA but not from individual ppercA

.

2. Following from point 1, for instance when ORperc =  
( ( ))/( ( ))p p p pperc B B percA A

1 1  exceeds the non-inferiority bound, 
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then the power for this percentile (to be averaged across for power 

calculation) is set to 0.

11.3.8.1 Worked Example 11.5

Repeating the sample calculations from Worked Example 11.1 on the abso-
lute risk difference scale increases the sample size to 134 patients per arm.

11.3.9 Calculations That Take Account of the Imprecision of 
the Estimate Effects with Respect to the Assumptions 
about the Mean Difference and the Variance Used in 
the Sample Size Calculations: Bayesian Methods

As discussed the percentiles for a posterior control response can be calcu-
lated as in Worked Example 11.4, and from these percentiles (11.7) and (11.8) 
can be used to give an estimate of the sample size (Julious, 2004c). Again it is 
best to highlight the points through a worked example.

11.3.9.1 Worked Example 11.6

For the absolute difference scale with a non-informative prior the sample 
size is estimated to be 134 patients per arm. This is the same as the sample 
size calculated. With a more pessimistic prior (the most likely response being 
90% with 90% certainty that it is greater than 85%), the sample size estimate 
is increased to 166 patients per arm.

Note that this is more of a pessimistic prior than when just looking at vari-
ability. Here a higher control response could equate to a narrowing of the 
effect of the investigative treatment over the control. This will adversely 
affect the sample size.

With a prior that the control response rate observed is about right (the most 
likely response being 85% with 90% certainty it is greater than 80%) the sam-
ple size estimate is increased to 124 patients per arm.

11.3.10 Cross-over Trials

There are a number of articles that have dealt specifically with the topic of 
cross-over equivalence trials (Lu and Bean, 1995; Tango, 1998, 1999; Nam, 
1997; Tang, 2003; Tang, Tang and Chan, 2003). However, these methodologies 
are simply extensions of methodologies for superiority cross-over trials and 
parallel group non-inferiority trials.

In Chapter 10 it was highlighted how to estimate the sample size for a 
superiority trial; you could simply use the sample sizes for parallel group 
superiority trials and take the sample size per arm to be the total sample size 
for a cross-over trial. This argument can be extended now to non-inferiority 
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trials. It is therefore recommended to use the parallel group methodologies 
described in this chapter to estimate the total sample size for a non-inferior-
ity cross-over trial.

11.4 As-Good-as-or-Better Trials

As discussed in Chapter 6, to calculate the sample size required for an as-
good-as-or-better trial we should apply the methodologies described for 
superiority (Chapter 9) and non-inferiority trials. 

Other issues with as-good-as-or-better trials are either the same as 
described for Normal data in Chapter 6 or generic and described in Chapter 1. 
Hence, this chapter does not go into detail on these types of trial.

Key Messages

For non-inferiority trials with high anticipated response rates 
the studies may be quite sensitive to assumptions about the 
anticipated response rates.
Simple Bayesian methods should be considered to calculate 
the sample size.
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12
Sample Size Calculations for 
Equivalence Trials with Binary Data

12.1 Introduction

For equivalence trials, the null H0 and alternative H1 hypotheses are defined 
as follows:

H0:  A given treatment is inferior with respect to the mean response 
( ).

H1:  The given treatment is equivalent with respect to the mean response 
( ).

Formally, these hypotheses can be written in terms of a clinical difference d 
(Committee for Proprietary Medicinal Products [CPMP], 2000)

H0: d or d.

H1: d d.

The issue to highlight here is that like non-inferiority trials under both 
the null and alternative hypotheses there is a non-zero difference between 
treatments. The implications are similar to those for non-inferiority trials 
discussed in Chapter 11 as there will be consequences with respect to the 
variance estimates under the null and alternative hypotheses.

12.2 Parallel Group Trials
12.2.1 Sample Sizes with the Population Effects 

Assumed Known: General Case

12.2.1.1 Absolute Risk Difference

Recall from Chapter 1 that the total Type II error (defined as ) is 
calculated from the result
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As with trials in which the primary response is anticipated to take a Normal 
form discussed in Chapter 5, for equivalence trials for the general case in 
which the expected true mean difference is not fixed to be zero the sample 
size cannot be derived directly as the total Type II error is the sum of the 
Type II errors associated with each one-tailed test.

In addition as with non-inferiority trials described in Chapter 11 there are 
a number of approaches for the derivation of the variance under the null and 
alternative hypotheses. The generic solution to estimation of the power for a 
given sample size is thus
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This chapter now discusses the different methods for estimation of the 
variances.

12.2.1.1.1 Method 1: Using Anticipated Responses

The first method of estimating the variance under the null hypothesis is sim-
ply to replace A and B with anticipated estimates of the response,  and , 
respectively. Hence, the variance under the null hypothesis becomes
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and the power for a given sample size can hence be estimated from
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To estimate the sample size you iterate (12.4) on the sample size until the 
nominal power is reached.
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12.2.1.1.2 Method 2: Using Anticipated Responses 
in Conjunction with the Equivalence Limit

The second method is to estimate A and B from (Dunnett and Gent, 1977)

 
A A B B A Bd d( )/ ( )/ ,2 2and  (12.5)

where d indicates symmetric equivalence limits. Applying (12.5) to (12.2), an 
estimate of the power for a given sample size can be obtained.

We use this result to iterate to find the required sample size. For this method 
the following inequality must hold (Farrington and Manning, 1990):

 max{ d, d}  min{ d, d}.

12.2.1.1.3 Method 3: Using Maximum Likelihood Estimates

The third method is to use maximum likelihood estimates for A and B  
(Farrington and Manning, 1990; Miettinen and Nurminen, 1985; Koopman, 
1984), defined as
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to enter into (12.2), where d1  A(1 d)d, c  d2  2d( A + 1) + + , 

b   (2  A + B  3d), w = [   cos 1(v/u3)]/3, u v b a c asign( ) / / ,2 29 3  a = 2, 

and v = b3/27a3  bc/6a2  d1/2a.

12.2.1.1.4 Comparison of the Three Methods

The three methods give quite different estimates for the sample size. The 
greatest difference is when there is a high (or low) response rate ( 0.85). 
Through the remainder of the chapter Method 1 is described, and Table 12.1 
gives sample sizes for this method for a finite range of responses. 

12.2.1.2 Odds Ratio

Remember that the variance about the log odds ratio can be approximated 
as (Whitehead, 1993)
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where i  is the average response on each outcome category [ 1 2( )/A B  
and 1 01 ]. Consequently the sample size for a given power can be 
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estimated from
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where d in this instance is the symmetric equivalence limit on the log scale. 
For non-inferiority trials described in Chapter 11 suggested values for d were 
given as log(0.43), log(0.47), log(0.50) or log(0.55). The rationale for their use in 
non-inferiority trials can be generalised o equivalence trials.

Table 12.2 gives sample sizes for a finite range of responses.

12.2.2 Sample Sizes with the Population Effects Assumed 
Known: No Treatment Difference

As with equivalence trials discussed for Normal data in Chapter 5 when the 
assumption is made of no true difference between treatments the calculations 
are greatly simplified, with a direct estimate of the sample size now possible.

TABLE 12.1

Sample Sizes for an Equivalence Study Estimated by Method 1 and 

Alternative Methods for 90% Power and a Type I Error Rate of 2.5%

A B Limit Sample Size A B Limit Sample Size
 
0.70 0.70 0.05 2,184 0.80 0.70 0.15 1,556

0.10 546 0.75 0.10 1,461

0.15 243 0.15 366

0.20 137 0.80 0.05 1,664

0.75 0.10 1,671 0.10 416

0.15 418 0.15 185

0.20 186 0.85 0.10 1,209

0.80 0.15 1,556 0.15 303

0.20 389 0.90 0.15 1051

0.85 0.20 1,419

0.85 0.75 0.15 1,324

0.75 0.70 0.10 1,671 0.80 0.10 1209

0.15 418 0.15 303

0.20 186 0.85 0.05 1,326

0.75 0.05 1,950 0.10 332

0.10 488 0.15 148

0.15 217 0.90 0.10 915

0.20 122 0.15 229

0.80 0.10 1,461

0.15 366 0.90 0.85 0.10 915

0.20 163 0.90 0.05 936

0.85 0.15 1,324 0.10 234

0.20 331

0.90 0.20 1,167
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12.2.2.1 Absolute Risk Difference

12.2.2.1.1 Method 1: Using Anticipated Responses

For the special case of no anticipated treatment difference the power can be 
estimated from
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However, as  (12.8) can be rewritten as
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where ( )/A B 2 is interpreted in this instance as the anticipated over-
all response. Consequently (12.9) can in turn be rewritten to give a direct 

TABLE 12.2

Sample Sizes for Different Equivalence Limits on the Odds 

Ratio Scale and Anticipated Responses for 90% Power and 

Type I Error of 2.5%
 

Equivalence Limit

A Odds Ratio 0.43   0.47   0.50 0.55
 
0.80 0.70 498 745 1,044 2031

0.80 319 435 557 876

0.90 243 311 377 532

1.00 229 285 339 455

1.10 254 323 391 546

1.20 318 424 532 804

1.40 564 829 1,141 2124

0.85 0.70 612 915 1,282 2496

0.80 396 539 690 1085

0.90 303 388 471 663

1.00 287 358 425 571

1.10 320 407 492 688

1.20 403 536 673 1017

1.40 717 1,054 1,452 2703

0.90 0.70 848 1,268 1,778 3460

0.80 553 754 965 1518

0.90 427 547 663 934

1.00 406 507 602 808

1.10 455 580 700 979

1.20 575 766 962 1452

1.40 1030 1,514 2,085 3883
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estimate of the sample size
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12.2.2.1.2 Method 2: Using Anticipated Responses 
in Conjunction with the Equivalence Limit

Following from the arguments for Method 1 the power is estimated from
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where A d/2 and B d/2 and the inequality hence now become 
max{ , } min{ , }d d d d2 2 . From (12.11) for a direct estimate of the 
sample size we get
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12.2.2.1.3 Method 3: Using Maximum Likelihood Estimates

For Method 3 A  and B  for use in (12.11) and (12.12) are now a little different
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where

d d d1 1( ) , c d d2 2 1( ( ) ˆ ) , b p d( ( ) )2 1 3 , a = 2, v  b3/27a3  

bc/6a2  d1/2a, u v b a c asign( ) / /2 29 3  and w  [   cos 1(v/u3)]/3.

12.2.2.2 Odds Ratio

With the assumption of no true difference between treatments (equivalent to 
OR = 1) the power can be estimated from

 

1 2 1 6

0

1

3 2
1n d ZA

i =

i / 1 , (12.13)



Sample Size Calculations for Equivalence Trials with Binary Data 203

whilst a direct estimate of the sample size can be obtained from
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12.2.2.3 Worked Example 12.1

An investigator wishes to design an equivalence trial in which the antici-
pated response rate on the active control is 85%. The investigator also expects 
an 85% response rate on the investigative therapy. Using an odds ratio of 
0.50, Table 12.2 gives the sample size as 425 patients per arm.

In comparison, working on the proportional scale, with the same antic-
ipated responses but with an equivalence limit of 15%, we would require 
(from Table 12.1) just 148 patients per arm. With a 10% equivalence limit the 
sample size is 335 patients per arm.

12.2.3 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

As with superiority and non-inferiority trials described in Chapters 10 and 
11 the sensitivity of an equivalence study design to the control response rate 
can be investigated through construction of a 95% confidence interval. The 
power could then be assessed at the two tails of the confidence interval.

This confidence interval could then be used with (12.4) for an absolute risk 
difference and (12.7) for an odds ratio to interrogate the sensitivity of the 
study to the control response rate.

12.2.3.1 Worked Example 12.2

Suppose the control response rate was assessed from a previous study in 
100 patients, and it is assumed that the investigative response rate is fixed at 
85%. The confidence interval indicates that a plausible range for the control 
response is between 78% and 92%.

Table 12.3 gives a breakdown of the sensitivity of the study design to the esti-
mate of the control response rate. As evidenced from this table this equivalence 
study is sensitive to both the lower and upper points of the confidence interval 
as these both bring the point estimate closer to the equivalence boundary.

For the odds ratio calculation the lower and upper tails of the confidence 
interval have powers of 24% and 3%, respectively. For the absolute difference 
the lower and upper tails have 43% and 59% power, respectively.

12.2.4 Calculations Taking Account of the Imprecision of the Estimates 
of the Population Effects Used in the Sample Size Calculations

By using appropriate confidence interval methodology around the control 
response rate pA, the power and hence the sample size can be calculated 
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using numerical methods for equivalence trials. Hence, if the absolute risk 
difference is of interest, the sample size can be estimated from
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where A and B are defined, respectively, as
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TABLE 12.3

Sensitivity Analysis for Equivalence Worked Example

a. Odds Ratio Scale

95% Confidence Interval

Observed Lower Upper
 
Control response 0.85 0.78 0.92

Investigative response 0.85  0.850  0.850

Power 90% 24% 3%

b. Absolute Risk Difference Scale

95% Confidence Interval

Observed Lower Upper
 
Control Response 0.85 0.78 0.92

Non-inferiority margin 0.15 0.15 0.15

Investigative response 0.85 0.85 0.85

Power 90% 43% 59%
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The equivalent calculation for an equivalence study designed around the 
odds ratio would be

 

1
1

0 998 2
1 2

0 001

0 998

.
,

.

.

perc

 (12.16)

where 1 and 2 are defined, respectively, as
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12.2.4.1 Worked Example 12.3

Suppose the control response rate was estimated from 100 patients. Repeating 
the same calculations obtained for the same equivalence limit of OR = 0.5 
the sample size should be increased to 449 patients per arm, around a 6% 
increase in the sample size compared to Worked Example 12.1 to account for 
the imprecision in the estimate of the control response.

With respect to estimating the sample size on the absolute risk difference 
scale increases the same size to 156 patients per arm. This is an increase in 
the sample size of 5% compared to Worked Example 12.1.

12.2.5 Calculations That Take Account of the Imprecision 
in the Estimates of the Effects Used in the Sample 
Size Calculations: Bayesian Methods

As described in Chapters 10 and 11 the percentiles for a posterior control 
response can be calculated to give an estimate of the sample size, which we 
now discuss through a worked example.
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12.2.5.1 Worked Example 12.4

For the absolute difference scale with a non-informative prior the sample size 
is estimated as 153 patients per arm. This is three less than the sample size 
calculated in Worked Example 12.3. With a more pessimistic prior (the most 
likely response being 80% with 90% certainty that it is greater than 75%), the 
sample size estimate is increased to 173 patients per arm. With a prior that 
the control response rate observed is about right (the most likely response 
being 85% with 90% certainty that it is greater than 80%) the sample size 
estimate is 152 patients per arm.

Similar calculations could be done if equivalence is defined in terms of an 
odds ratio.

12.2.6 Calculations Taking Account of the Imprecision 
of the Population Effects with Respect to the 
Assumptions about the Mean Difference and the 
Variance Used in the Sample Size Calculations

To allow for the imprecision in the assumptions about both the mean differ-
ence and variance numerical methods could be used to calculate the sample 
size on the absolute difference scale from

 

1
1

0 998 2
1 2

0 001

0 998

.
,

.

.

perc  

(12.17)

where 1 and 2 are defined, respectively, as
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A number of issues also need to be considered:

 1. The investigative response rate pB remains assumed fixed, calcu-
lated from the initial pA and not from individual ppercA

.

 2. Following from issue 1, for instance when p pperc BA
 exceeds an 

equivalence bound, then the power for this percentile (to be aver-
aged across for power calculation) is set to 0.

The equivalent calculation to estimate the sample size for an equivalence 
study design based around the odds ratio would be
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where 1 and 2 are defined, respectively, as
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The following two points should be considered, however:

 1. The investigative response rate pB remains fixed and is estimated 
from the initial pA.

 2. Following from point 2, for instances when OR p pperc perc BA
( ( ))/1  

( ( ))p pB percA
1 exceeds an equivalence bound then the power for 

this percentile (to be averaged across for power calculation) is set 
to 0.
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12.2.6.1 Worked Example 12.5

Repeating the worked example in which the control response rate was esti-
mated from 100 patients the sample calculations on the absolute difference 
scale increase the sample size to 194 patients per arm.

12.2.7 Calculations That Take Account of the Imprecision of 
the Population Effects with Respect to the Assumptions 
about the Mean Difference and the Variance Used in 
the Sample Size Calculations: Bayesian Methods

In the following worked example the calculations are repeated using Bayesian 
methods to estimate posterior percentiles for use in (12.17).

12.2.7.1 Worked Example 12.6

For the absolute difference scale with a non-informative prior the sample size is 
estimated to be 202 patients per arm. This is eight greater than the sample size 
previously calculated in Worked Example 12.5. With a prior (the most likely 
response being 90% with 90% certainty that it is greater than 85%), the sample 
size estimate is 177 patients per arm. With a prior for which the control response 
rate observed is correct (the most likely response being 85% with 90% certainty 
it is greater than 80%) the sample size estimate is 172 patients per arm.

12.3 Cross-over Trials

The arguments for superiority and non-inferiority trials can be extended to 
equivalence trials. Although there are a number of articles that dealt specifi-
cally with this topic (Tango 1998, 1999; Nam, 1997; Tang, Tang and Chan, 2003), 
it is recommended to use the parallel group sample size methodologies per 
arm to estimate the total sample size for an equivalence cross-over trial.

Key Message

For equivalence trials with high anticipated response rates the 
studies may be quite sensitive to assumptions about the antici-
pated responses.
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13
Sample Size Calculations for Precision- 
Based Trials with Binary Data

13.1 Introduction

Chapter 1 introduced the concept of trials based on precision about the esti-
mates, while Chapter 8 discussed the sample size calculations for Normal 
data. For binary data what we are designing is a trial to obtain an estimate 
for the possible treatment effect with respect to a binary response rate.

For binary data we only need an estimate of a response rate to estimate the 
sample size. This response rate need not be broken down by treatment but 
could be an anticipated response overall—across treatments.

13.2 Parallel Group Trials

13.2.1 Absolute Risk Difference

In a two-arm trial in which the primary outcome is binary, the objective is to 
estimate a possible population difference

 pA  pB,

where pA and pB are sample proportional responses on treatment groups A 
and B, respectively. As discussed in Chapter 9 a (1   )100  Normal approxi-
mation confidence interval for pA  pB has a half-width

 
w Z Var S/ ( ) ,2

 (13.1)

where Var(S), assuming nA = nB is defined as

 

Var S
p p p p

n
A A B B

A

( )
( ) ( )

,
1 1

 (13.2)

which can in turn be approximated from
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where p p pA B( )/ ,2 that is the mean risk response expected across both 
treatments. In Chapter 9 it was highlighted that this approximate variance 
formula holds for absolute risks (pA and pB) that are within 0.30 of each other 
and thus cover most practical situations. For trials based on precision consid-
erations, therefore, it may be optimal to use an estimate of the mean overall 
response for the variance and subsequent sample size calculations. Given 
that an objective of a precision-based study may be to estimate possible indi-
vidual treatment responses, having a sample size calculation that does not 
require responses to be specified in each group may be the best approach. 
However, if we have reasonable estimates for each treatment response, then 
these should be used in calculations.

A conservative approach would be to set p 0 5.  as if we do not have any 
idea of the overall response; this would give us a maximum estimate of the 
variance for the p

_
 absolute risk difference and would not be too conservative 

provided that p
_
 is within the range (0.3, 0.7). Therefore, for a given half con-

fidence interval width w the following condition must be met to obtain the 
sample size per group
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Table 13.1 is derived from (13.4). Table 13.1 gives the sample size required 
for different values of the expected mean response across treatment groups  
p
_
 and widths w. Two-sided 95% confidence intervals are assumed to be cal-

culated in the final analysis. The mean responses p
_
 given in the table vary 

from 0.05 to 0.50. Values greater than 0.50 are not given as the sample size 
required for p

_
  0.60 is equivalent to p

_
  0.40, the sample size for p

_
  0.70 is 

the same as p
_
  0.30, and so on.

TABLE 13.1

Sample Sizes Required per Group for Two-Sided 95  

Confidence Intervals for Different Values of Width w 

for Various Expected Mean Absolute Responses
 

w

 p
_
 5 10 15 20 25

 
0.05 146  37 17 10  6

0.10 277  70 31 18 12

0.15 392  98 44 25 16

0.20 492 123 55 31 20

0.25 577 145 65 37 24

0.30 646 162 72 41 26

0.35 700 175 78 44 28

0.40 738 185 82 47 30

0.45 761 191 85 48 31

0.50 769 193 84 49 31
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13.2.2 Odds Ratio

For binary data the treatment response rate may also be expressed in terms 
of an odds ratio OR
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A (1  )100  confidence interval for log(d) can be derived using the follow-
ing variance estimate (Whitehead, 1993):
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where pi  are the expected mean responses. Remember that for binary data 
p p p pA B1 2( )/ , say, and p p p2 11 1 and thus correspond to p

 
given 

previously in this chapter. Therefore, as for binary data for a given half con-
fidence interval width w around the odds ratio, the following condition must 
be met to obtain the sample size per group:
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Note that in this instance w is on the log scale, so w  0.60 would equate to a 
confidence interval for a given odds ratio being within (1  w)  OR to OR/(1 

 w), that is, 0.40  OR to 2.5  OR. Also note that log(1  w) is on the arithmetic 
scale, that is, log(1  w) log[1/(1  w)].

Table 13.2 gives sample sizes required for different values of the mean 
response across treatment groups p

_
 and widths w estimated using (13.7). 

Two-sided 95% confidence intervals are again assumed to be calculated in 
the final analysis. As with Table 13.1 the mean responses p

_
 given in the table 

vary from 0.05 to 0.50. To obtain a sample size for p
_
  0.5 look up 1  p

_
 .

13.2.3 Equating Odds Ratios with Proportions

As with superiority trials discussed in Chapter 9 (13.4) and (13.7) can be 
approximately equated if we redefine the half-widths around the confidence 
intervals of the odds ratios wor and proportional differences wp. Furthermore, 
if (pA  pB) is an estimate of the treatment response and( )p pA BL L

is the lower 
bound for a 95  confidence interval for this response, then wp  would be 
defined as
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Likewise, using the same arguments, for wor we would have
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Thus, (13.4) and (13.7) can be rewritten, respectively, as
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Remembering that,
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and log OR  2(OR  1) (OR  1), which holds for odds ratios within 0.33  OR 
 3.00, hence
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and
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Assuming p p p pL L( ) ( )1 1 where p p pL A BL L
( )/2 and substituting (13.12), 

(13.13) and (13.14) into (13.7) we obtain
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TABLE 13.2

Sample Sizes Required per Group for Two-Sided 95% Confidence Intervals for 

Different Values of Width w around the Odds Ratio for Various Expected Mean 

Proportional Responses
 

w
p 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

 
0.05 1,955 1,272 872 620 453 337 254 193 147 112 85

0.10 1,032 672 461 328 239 178 134 102  78  59 45

0.15 729 474 325 231 169 126  95  72  55  42 32

0.20 581 378 259 185 135 100  76  58  44  34 25

0.25 496 323 221 158 115  86  65  49  38  29 22

0.30 443 288 198 141 103  77  58  44  34  26 20

0.35 409 266 182 130  95  71  53  41  31  24 18

0.40 387 252 173 123  90  67  51  39  30  23 17

0.45 376 245 168 119  87  65  49  37  29  23 17

0.50 372 242 166 118  86  64  49  37  28  23 16
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Thus, similar to superiority trials, (13.4) and (13.7) can be used interchange-
ably depending on preference. Due to this property we therefore have
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and hence

 
w w p pp OR|log( )|( ( )).1 1

 (13.17)

Using (13.17) Table 13.3 can be derived.

13.2.4 Worked Example 13.1

A pilot study is planned to estimate the odds ratio between comparator and 
control regimens. The expected mean response rate is 50  across the two 
treatments, and the wish is to quantify the odds ratio within 55  (i.e. w  55 ). 
This means that if an odds ratio of 0.70 was observed, we would be able to 
say that the true odds ratio is likely to be between 0.32 and 1.56. Therefore, 
from Table 13.2 the sample size required is 49 per group.

Following from the example from Table 13.3 w  0.55 on the odds ratio 
scale is equivalent to proportional half confidence width of 20  for a mean 
response rate of 50 . From Table 13.2 a width of 20  and a mean propor-
tional response of 50  gives 49 subjects per group again.

13.2.5 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

Extending the arguments for other types of trial discussed in this book 
the sensitivity of a precision-based analysis can be investigated through 

TABLE 13.3

Widths on the Absolute Difference Scale That Are Equivalent to the Widths w 

around the Odds Ratio for Various Anticipated Expected Mean Proportions
 

w

p 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
 

0.05 0.014 0.017 0.020 0.024 0.028 0.033 0.038 0.044 0.050 0.057 0.066

0.10 0.026 0.032 0.039 0.046 0.054 0.062 0.072 0.082 0.094 0.108 0.125

0.15 0.037 0.045 0.055 0.065 0.076 0.088 0.102 0.117 0.134 0.154 0.177

0.20 0.046 0.057 0.069 0.082 0.096 0.111 0.128 0.147 0.168 0.193 0.222

0.25 0.054 0.067 0.081 0.096 0.112 0.130 0.150 0.172 0.197 0.226 0.260

0.30 0.060 0.075 0.090 0.107 0.126 0.146 0.168 0.192 0.220 0.253 0.291

0.35 0.065 0.081 0.098 0.116 0.136 0.158 0.182 0.208 0.239 0.274 0.315

0.40 0.069 0.086 0.103 0.123 0.143 0.166 0.192 0.220 0.252 0.289 0.333

0.45 0.071 0.088 0.107 0.126 0.148 0.172 0.198 0.227 0.260 0.298 0.343

0.50 0.072 0.089 0.108 0.128 0.149 0.173 0.200 0.229 0.262 0.301 0.347
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construction of a 95  confidence interval around the anticipated overall 
response rate. For each tail of this confidence interval we can reinvestigate 
the precision of the trial to give a quantification of its sensitivity.

13.2.5.1 Worked Example 13.2

Suppose the expected response rate of 50  for Worked Example 13.1 was 
estimated from a trial with 50 patients. The 95  confidence interval for 
this would be between 36  and 64 . On the absolute risk difference scale 
these lower and upper tails would give a precision of 19 , which is a slight 
improvement over the previous calculations due to 50  giving the maxi-
mum variance estimate. On the odds ratio scale the precision for each tail 
would be 56 , which is a little worse than previously.

13.3 Cross-over Trials

As with the other types of trial discussed in this book it is recommended 
that the total sample size for a cross-over precision-based trial be taken from 
the one-arm sample size for a parallel group trial.

Key Message

For precision-based studies with a binary outcome there is no 
need to have an estimate of the response in each treatment 
group to estimate the sample size.
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14
Sample Size Calculations for Clinical 
Trials with Ordinal Data

14.1 Introduction

If there is one type of sample size calculation on which I have concentrated a 
lot of research energies it has been the calculation of sample sizes for ordinal 
data. However, a realisation dawned when first I gave a sample size course I 
wrote. I had put together a detailed slide presentation and long practical but 
noticed a stirring in the class when they became aware that after the lecture, 
which I had just given, they were now expected to work on the practical.

I asked for a show of hands and asked if anyone had done, or could see 
themselves doing in the foreseeable future, a sample size calculation for 
ordinal data. No hands came up. In fact in subsequent presentations of the 
course a hand has yet to go up. Despite this it was agreed that it is useful to 
know how to do the sample size calculations for ordinal outcomes and have 
the reference material for future use.

This got me thinking due as to why I had determined the need so incor-
rectly, which brought the realisation that as someone seen as an ‘expert’ in 
the field of sample size calculation people approach me when they have a 
problem. The vast majority of the time people are planning a trial with a stan-
dard analysis and for which a standard sample size calculation is required 
that they are perfectly able to do themselves. They come to see me only when 
there is need for a non-standard solution—such as for an ordinal response. I 
had picked up a pattern from this and falsely interpolated the level of learn-
ing need.

This is not to say that reading this chapter is a waste of time. Much of the 
detail in the chapter comes from hands-on real-world experience; hence the rec-
ommendations made are done in light of practical experience. The methodolo-
gies applied also have applications in other types of sample size calculation, and 
in Chapter 15 on survival analysis the methods in this chapter are revisited.

This chapter therefore describes the calculations for clinical trials in which the 
expectation is that the outcome data will take an ordinal form. To highlight the 
issues of designing a trial with an ordinal this chapter uses data on quality-
of-life (QoL) outcome scores from a palliative clinical trial in lung cancer patients 
(Medical Research Council Lung Cancer Working Party, 1996).
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14.2 The Quality-of-Life Data

The data in this chapter were taken from a randomised parallel group con-
trolled trial of a standard treatment against a less-intensive treatment in 310 
patients with small-cell lung cancer and poor prognosis (Medical Research 
Council Lung Cancer Working Party, 1996). The standard treatment (A) con-
sisted of a four-drug regime (etoposide, cyclophosphamide, methotrexate 
and vincristine), while the new less-intensive treatment (B) under investiga-
tion contained just two of these compounds (etoposide and vincristine). The 
two treatment schedules were the same, comprising three cycles of chemo-
therapy at the same dosage. Each cycle was given on 3 consecutive days at 
3-week intervals.

The QoL questionnaire used in the trial was the Hospital Anxiety and 
Depression Scale (HADS). The HADS was developed by Zigmond and 
Snaith (1983). It is a self-rating questionnaire that a patient completes in the 
waiting room in order to reflect how they have felt during the past week 
before meeting a doctor. It has 14 items that split equally into the two sub-
scales and provides scores in the range 0–21 in two dimensions: anxiety and 
depression. The HADS has three clinically predefined categories for each 
dimension: a total score 0–7 is defined as a ‘Normal’, 8–10 as a ‘borderline 
case’ and 11–21 as a ‘case’ suggesting significant anxiety or depression. In the 
clinical trial case study in this chapter the 310 patients’ baseline scores prior 
to randomisation are used for expository purposes as the outcome for the 
control therapy. There were 266 patients who completed a baseline response 
which we will use for expository purposes.

Figure 14.1 displays the distribution of the HADS anxiety scores at base-
line. It is negatively skewed. The scores do not seem to take an approximate 
Normal distributional form, although not alarmingly so. It therefore seems 
that the usual mean and standard deviation may not be adequate to sum-
marise the distributions. As a consequence, for the purposes of this chapter 
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FIGURE 14.1 Distribution of HADS anxiety scores at baseline (n  266).
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it is recommended that distribution-free techniques should be considered 
for testing treatment differences.

Note that in practice transformations such as a log transformation may be 
considered for such data with inference then made on the transformed scale. For 
the purposes of this chapter, however, transformations are not considered.

14.3 Superiority Trials

14.3.1 Parallel Group Trials

The calculation of sample sizes for ordinal data is not immediately 
straightforward. Two methods are described in detail in this chapter: one 
proposed by Whitehead (1993) and a second proposed by Noether (1987). 
Unlike for previous chapters in which sample size tables could be pro-
vided, this is not possible for ordinal data. However, the steps required 
for the calculations are not that difficult and are now described through 
means of worked examples.

14.3.2 Sample Sizes That Are Estimated Assuming 
That the Population Effects Are Known

14.3.2.1 Whitehead’s Method

Most QoL scales have categories that can be ordered, but the scores should 
not be treated as meaningful numbers; for example, a change in HADS from 
5 to 10 is not the same as a change from 10 to 15. However, methods have been 
developed for sample size calculations for ordinal data (Whitehead, 1993).

As discussed in Chapter 1, in general terms for a two-tailed, -level test we 
require the following for the variance if the test is going to have the correct 
power

  

Var S
d

Z Z
( )

)
.

/

2

1 1 2
2(

 
(14.1)

Here d is the effect size of interest (assessed through a log odds ratio) with 
the sample variance Var(S) about the log odds ratio for an ordinal response 
estimated from (Whitehead, 1993; McCullagh, 1980; Jones and Whitehead, 
1979, Campbell, Julious and Altman, 1995)
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(14.2)

Here k is the number of categories on the QoL instrument, i is the mean 
proportion expected in category i, that is, i Ai Bi( )/2 , where Ai and Bi
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are the proportions anticipated in category i for the two treatment groups 
A and B, respectively, and  and  are the overall Type I and Type II errors, 
respectively, with Z1 2/ and Z1 denoting the percentage points of a stan-
dard Normal distribution for these two errors. Here nA is the sample size in 
one group assuming nA  nB. Note that in this chapter, as for binary data, the 
issue of allocation ratios between treatments is ignored.

Now by equating (14.1) with (14.2) we have (Julious, George and Campbell, 
1995; Julious et al., 1997, 2000; Campbell, Julious, et al., 2001; Whitehead, 1993)
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(14.3)

The result (14.3) is based on the Mann-Whitney U test for ordered categorical 
data. It estimates the sample size based on the odds ratio (OR) of a patient 
being in a given category or less in one treatment group compared to the 
other group.

A form of this equation was used in Chapter 9 for binary data—a binary 
response being a special case of (14.3). For an analysis under the assumption 
of proportion odds the anticipated effect size is expressed as an odds ratio 
defined as

 

OR i Bi
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This is a measure that is not immediately straightforward to interpret for 
binary data and, as a consequence, is more difficult for an ordinal response. 
It is best to discuss the application of (14.3) through a worked example.

14.3.2.1.1 Worked Example 14.1: Full Ordinal Scale

When designing a clinical trial to estimate the odds ratio we can utilise the 
predefined clinical cut points of the HADS. For example, 27.1% of patients at 
baseline are defined as clinical cases on the HADS Anxiety dimension score 
at baseline (see Table 14.1), that is, 27.1% record values resulting in a score of 
10 or less. This we could take, for expository purposes, as what we would 
expect on standard therapy (A). The odds with A are thus 0.271/(1 − 0.271)  
0.372. Suppose a new therapy (B) is to be studied and the investigator decides 
that a clinically meaning effect is one that would increase the proportion of 
non-cases to 40.0% or a postulated odds of 0.40/(1 − 0.40)  0.67. The ratio of 
these odds gives OR  0.372/0.667  0.56 in favour of B. This value can then 
be used as the basis for the sample size calculation.

The result (14.3) makes no assumption about the distribution of the data, but it 
does assume proportional odds between the treatments across the QoL dimen-
sion. This implies that the odds ratios are identical for each pair of adjacent cate-
gories throughout the scale. What this means practically can be highlighted by 
extending the example given. When using the predefined clinical cut point for 
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non-cases the investigator anticipated the OR would be 0.56. The assumption of 
proportional odds implies that, if instead of using 10 or less as the definition of 
a non-case, 9 or less had been used, we would nevertheless obtain OR9  0.56, 
and so on for OR8, OR7, and so on. Thus, although the actual observed odds 
ratios might differ from each other across the scale, the corresponding popula-
tion values are assumed all equal, which implies that OR1  OR2  OR3  …  
OR21  0.56. However, the calculation of sample size using (14.3) are robust to 
departure from this ideal, provided all the odds ratios indicate an advantage to 
the same treatment (Julious, George, Machin et al., 1995; Julious et al., 2000).

Using the odds ratio of 0.56 the anticipated new therapy responses can be 
derived as per Table 14.2. From these anticipated responses an estimate of 
the variance can be made from (14.2) that when placed in (14.3) with the odds 

TABLE 14.1

Frequency of Responses on the HADS Anxiety Scores 

as Baseline for Patients with Small-Cell Lung Cancer
 

Category Score Number of Patients
 

Normal 0 0

1 0

2 1

3 0

4 2

5 3

6 5

7 10

Borderline 8 12

9 15

10 24

Clinical case 11 41

12 49

13 36

14 23

15 34

16 9

17 2

18 0

19 0

20 0

21 0

Total 266

Normal 0–8 21 (7.9%)

Borderline     9–103 51 (19.2%)

Clinical case 11–21 194 (72.9%)

Mean 11.70

SD ( ) 2.66

Median              12
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ratio gives an estimate of the sample size of 188 patients per arm (for 90% 
power and two-sided Type I error rate of 5%).

Each cell for the new therapy is derived using the standard therapy’s antic-
ipated response and the odds ratio, for example,

 
QT10 1 1 0 56 1 0 271 0 271 0 40/( . ( . )/ . ) .

 
QT11 1 1 0 56 1 0 425 0 425 0 57/( . ( . )/ . ) .

 
QT12 1 1 0 56 1 0 609 0 609 0 74/( . ( . )/ . ) .

(there is a little rounding when done by hand).
The application of proportional odds therefore allows that, if the distribution 

of one of the treatment groups can be specified, then the anticipated cumula-
tive proportions for the other treatment can be directly derived. Hence, with 
prior knowledge of the distribution of just one treatment group and an effect 
size assessed by an OR, an estimate of the sample size can be obtained.

14.3.2.1.2 Worked Example 14.2: Effects of Dichotomisation

An advantage of the HADS instrument is that for the process of anticipating 
the effect size, and consequent sample size, it has a predefined definition of 

TABLE 14.2

Anticipated Percentages of Response on the HADS Anxiety Scores for Standard 

Treatment and New Treatment for Patients with Small-Cell Lung Cancer
 

Standard Therapy S New Therapy T

Category Scorea Percentage PSi

Cumulative 
Percentage QSi Percentage PTi

Cumulative 
Percentage QTi

 
Normal 0–3 0.4 0.4 0.7 0.7

4 0.8 1.2 1.4 2.1

5 1.1 2.3 1.9 4.1

6 1.9 4.2 3.2 7.3

7 3.8 8.0 6.2 13.5

Borderline 8 4.5 12.5 6.9 20.4

9 5.6 18.1 8.0 28.4

10 9.0 27.1 11.6 40.0

Clinical case 11 15.4 42.5 17.0 57.0

12 18.4 60.9 16.6 73.6

13 13.5 74.4 10.3 83.9

14 8.6 83.0 5.8 89.8

15 12.8 95.8 7.8 97.6

16 3.4 99.2 1.9 99.6

17–21 0.8 100.0 0.4 100.0
 

a The 22 categories of Table 14.1 are reduced to k  15.
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what constitutes a case that can then be used to obtain a value of a readily 
interpretable effect size. This effect size, here expressed as an odds ratio, can 
then be extended across the full QoL scale and an estimate of the sample size 
made.

These cut-offs, however, can encourage some researchers to dichotomise 
QoL scales to calculate sample sizes. For example, with the HADS Anxiety 
dimension, one of the cut-offs can classify subjects as either a clinical case 
or borderline or better. For this, now binary, situation, (14.3) can still be used 
to estimate a sample size but ignoring the full ordered categorical nature of 
the data, may result in a substantial overestimation of the sample size. For 
example, if a clinically meaningful difference was set again at 0.56 around 
the cut-off of non-cases/clinical cases on the HADS Anxiety score, then by 
dichotomising (14.3) gives an estimate of the sample size of 277 compared 
to only 188 when all k  22 categories are used in the calculations. This is a 
potential overestimate of 47% in the necessary sample size if the data were 
analysed using all 22 categories.

Obviously, if the intention is to analyse the scale as a dichotomous end-
point then the binary sample size calculated may be appropriate, although 
this approach may be questioned also as wasting patients. Dichotomising the 
QoL scale to estimate a sample size, and consequently to analyse the data as 
ordinal, should be avoided if possible as sample sizes could be unnecessarily 
inflated.

14.3.2.1.3 Worked Example 14.3: Additional Categories

It may not be essential to use the full categorical scale. For example, with 
HADS there is an additional category of ‘Normal’ for subjects with a score of 
8 or less, and just less than 8% of patients are classified as such on the anxi-
ety dimension. If we then calculated the sample size using the k  3 groups 
of Normal, borderline case and clinical case as the categories, the estimated 
sample size, from (14.3), is 267 subjects—only a marginally closer estimate. 
However, if we identified an additional category of ‘severe clinical case’ for 
subjects with a HADS score 14 or above (Julious et al., 1997, 2000) and based 
the sample size calculations on the four categories, the estimated sample size 
of 210 patients is now quite close to the optimal 188. Therefore, knowledge 
of anticipated responses in only a handful of categories can give sample size 
estimates that are more precise for only a modest increase in the complexity 
of the calculations.

The reason why ignoring the ordinal scale substantially increases the sam-
ple size is due to the increase in variance estimated from (14.2). Table 14.3 
illustrates this point. The minimum the variance can be for any number of 
categories on a scale is for the special case in which the anticipated mean 
responses for each category are equal, that is, 1 2 3 1k k . If this 
result is placed into (14.2) we can obtain the anticipated relative variances 
for different numbers of categories for the most optimal responses. The ratio 
of these variances can in turn give inflation factors for the sample size for 
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different numbers of categories relative to the optimum number of catego-
ries, that is, a continuous scale by which

 

1 1

1

3

i =

k

i .

From Table 14.3 we can see that for the optimum mean responses we would 
anticipate a 33% increase compared to a continuous response as opposed to 
just 5% for five categories (Campbell, Julious and Altman, 1995). Thus, what 
these results show is that although dichotomising could lead to a serious 
inflation of the sample size, even using only a little extra information (from 
extra categories) can substantially improve a sample size estimate.

From Table 14.3 we can therefore derive a quick sample size formula for the 
case when we have a large number of categories assuming the distribution of 
responses is evenly spread and one category does not dominate
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(14.4)

which for 90% power and a two-sided significance level becomes

 

n
ORA
63

2[log ]
.

 
(14.5)

14.3.2.1.4 Worked Example 14.4: Quick Result

For the same worked example as for a two-sided Type I error rate of 5% 
and 90% power for an odds ratio of 0.56 both results (14.4) and (14.5) give a 
sample size of 188 patients per arm, which is the same as calculated using 
all categories.

TABLE 14.3

Correction Factor to Be Used When the Number 

of Categories Is Less Than 5
 

Number of 
Categories

Mean Proportions 
Anticipated

Correction 
Factor

 
2                             1 2 0 500. 1.333

3                 1 2 3 0 333. 1.125

4          1 2 3 4 0 250. 1.067

5 1 2 3 4 5 0 200. 1.042
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14.3.2.2 Noether’s Method

An alternative ordinal method for sample size calculation is that of Noether 
(1987) by which the sample size per group is calculated from

 
n

Z Z
PA

( )

( . )
.

/1 2 1
2

26 0 5
 (14.6)

Here P is defined for two treatment groups A and B as the probability of A 
being greater than B (or vice versa), that is, P  P(A  B). Indeed the meth-
odology of Noether (1987) is of particular interest as it is so simply written. 
The method itself makes no assumption about the distributional form of the 
data. The main requirement (not assumption) is that the data are (relatively) 
continuous.

For quick calculations to detect a difference with 90% power at the two-
sided 5% level of significance we could use
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(14.7)

As with the method of Whitehead the calculations are not immediately 
straightforward and are best described through a worked example.

14.3.2.2.1 Worked Example 14.5: Illustrative Example

Worked Example 14.5, although using real data, is a little artificial but allows 
a detailed description of the steps for calculating the sample size using 
Noether’s approach. The following data show the age at diagnosis of Type 2 
diabetes in young adults:

 
Males (A): 19 22 16 29 24

Females (B): 20 11 17 12
 

To calculate the probability that P(A  B) we calculate the Mann-Whitney U 
statistic as described in Table 14.4.

Now to find P(A  B) you take 17 and divide it by the multiple of the two 
sample sizes (here 5 and 4) and hence P(A  B)  17/20  0.85. Similarly for 
P(B  A) we have 0.15.

An odds ratio can be derived by taking the ratio of these two numbers, that 
is, OR  P(A  B)/P(B  A)  5.66

If we wished to design a study with 90% power and a two-sided signifi-
cance level of 5% to assess the difference between males and females taking 
the effect size as what we have observed before, P  0.85, then the sample size 
required is 15 subjects per arm.

If we had used the quick result, (14.1), we would again have estimated the 
sample size to be 15 subjects per arm.
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To avoid doing the steps in the table we could use

 

P A B
x x
s s
A B

A B

( ) .
2 2

 

(14.8)

Strictly speaking this result assumes that the data are Normally distributed 
to obtain an estimate for P(A  B). For these data xA 22, sA 4 95. , xB 15
and sA 4 95. , and P(A  B) is estimated as 0.86, which is quite similar to the 
previous estimate and would lead to an estimate of the sample size of 14 
subjects per arm.

14.3.2.2.2 Worked Example 14.6: Worked Example 14.1 
Revisited—Full Ordinal Scale

The calculations undertaken in the illustrative example are now under-
taken on the data set given in Table 14.1. The anticipated responses are as in 
Table 14.2. The counts in Table 14.5 for the new treatment arm were derived 
through multiplying the cell frequencies in Table 14.2. by 266. There is a little 
rounding error as these new counts add to 264.

To do the calculations as described in Table 14.5 the derivation is a little 
more complicated due to the fact there are non-unique values. Table 14.5 uses 
Noether’s method for the data in Table 14.2.

The U value is calculated as 38,096. This is usually divided by the multiple 
of two sample sizes. However, we have ties, so the final column is calculated 
to work out the instances that would need to be accounted for by ties. These 
instances were accounted for by allocating them equally to the U’s for both 
A and B, that is,

 P(A  B)  (38,096  7,584  0.5)/(266  264)  41,888/70,224  0.596.

TABLE 14.4 

Worked Example of Calculation of U for a Mann-Whitney U Statistic
 

Step 1 Arrange the observations in order of magnitude:

Males (A)    16  19  22  24  29

Females (B)    11    12  17  20

Step 2 Affix either A or B to each observation:

               B     B   A B     A B    A       A         A

Step 3 Under each A, write down the number of B’s to the left of it:

B B A B A B A A A
  2 3 4 4 4 

Under each B, write down the number of A’s to the left of it:

B B A B A B A A A
  0 0 1 2 

Step 4 Sum the A scores UA  2  3  4  4  4  17 (i.e. A  B 17 times)

Sum the B scores UB  0  0  1  2  3 (i.e. B  A 3 times)
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The result from Noether’s method therefore gives a sample size of 190 patients 
per arm. This compares to 188 calculated using Whitehead’s method.

For these data we have xStandard 11 70. and sStandard 2 66. ; from Table 14.4 
we anticipated xNew 10 80. and sNew 2 67. , and P(X  Y) is estimated as 0.595 
from (14.8), which would return a sample size of 194.

14.3.2.2.3 Worked Example 14.7: Four Categories

The calculations for a finite number of categories are given in Table 14.6. For 
this table we have

 P(A  B)  (30,356  21,992  0.5)/(266  266)  0.584,

which gives a sample size of 249 patients per arm. This result is conservative 
compared to the Whitehead approach estimated with four categories (which 

TABLE 14.5

Worked Example Using the Method of Noether
 

Cells Standard (1) New (2)
Step 3 from 

Table 14.4 (3) Columns (1)  (3) Columns (1)  (2)
 

0–3 1 2 2

4 2 4 2 4 8

5 3 5 6 18 15

6 5 9 11 55 45

7 10 16 20 200 160

8 12 18 36 432 216

9 15 21 54 810 315

10 24 31 75 1,800 744

11 41 45 106 4,346 1,845

12 49 44 151 7,399 2,156

13 36 27 195 7,020 972

14 23 15 222 5,106 345

15 34 21 237 8,058 714

16 9 5 258 2,322 45

17–21 2 1 263 526 2

266 266 264 38,096 7,584
 

TABLE 14.6

Worked Example Using the Method of Noether
 

Cells Score Standard (1) New (2)
Step 3 from 

Table 14.4 (3)
Columns 
(1)  (3)

Columns 
(1)  (2)

 
Normal 0–7 21 36 756

Borderline 8–10 51 70 36 1,836 3,570

Clinical case 11–13 126 117 106 133,356 14,742

Severe clinical 14 68 43 223 15,164 2,924

30,356 21,992
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estimated the sample size as 210). This is probably because of the number of 
ties in this sample size calculation with the approach of Noether requiring 
(relatively) continuous data. The calculations are therefore, with Noether’s 
method, less straightforward with ties.

14.3.3 Comparison of Methods

Although quite time consuming, both the calculations to estimate the sample 
size using the approaches of Noether and Whitehead are relatively straight-
forward. The Noether approach is probably more complex in that defining 
P(A  B) is not straightforward. For the comparisons here we used the hypoth-
esised responses for the investigative treatment estimated using the effect size of 
the Whitehead approach to use with the Noether approach. Reassuringly in this 
instance, for the same effect sizes, the two approaches were not too different.

To assist in using the approach of Noether (14.8) can be adapted, assuming 
a common variance across treatments, to give the effect sizes for different 
standardised differences ( / );d we have

 

P A B( ) ,
2  

(14.9)

from which Table 14.7 can be derived. Again it should be noted that this result 
assumes that the data are Normally distributed, but it could be used to help inter-
pret P(A  B) or to provide an estimate for P(A  B) for sample size calculations.

Given the easier interpretation of effect sizes this chapter concentrates on 
the Whitehead approach as it has the advantage of being thought of as gen-
eralised from binary methodology and as a result (as highlighted in another 
section) has a measure of effect that can be interpreted in terms of the binary 
response while of course not having the penalty of inflating the sample size 
like the binary approaches would.

Note also that another common way to calculate sample sizes for ordinal 
responses is to use the Normal data methodology described in Chapter 3. 
Julious et al. demonstrated that assuming the data take a Normal form might 
give suboptimal results (Julious, George and Campbell, 1995; Julious et al., 
2000).

Assuming the data take a Normal form, Table 14.8 gives a comparison of the 
sample sizes using Noether’s method (and (14.9)) and using the Normal approxi-
mation approach described in Chapter 4. What this table suggests is that if you 
have data that are anticipated to take a Normal form, using the Noether approach 
to estimate the sample size would give a conservative sample size estimate.

14.3.4 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

In the chapters describing calculations for data anticipated to take a Normal 
form it was described how the sensitivity of a trial design to the variance 
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could be investigated using highly plausible values for the variance. The 
same principle could be applied to ordinal data for which for a given sample 
size calculation the sensitivity could be assessed through evaluating the loss 
of power due to a highly plausible variance from
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(14.10)

For Normal data, as discussed in Chapter 3, we can obtain a highly plau-
sible value for the variance by assuming the variance is sampled from a 

TABLE 14.7

P(A  B) for Different Standardised 

Differences Assuming the 

Outcome Is Normally Distributed
 

P(A  B)
 

0.05 0.514

0.10 0.528

0.15 0.542

0.20 0.556

0.25 0.570

0.30 0.584

0.35 0.598

0.40 0.611

0.45 0.625

0.50 0.638

0.55 0.651

0.60 0.664

0.65 0.677

0.70 0.690

0.75 0.702

0.80 0.714

0.85 0.726

0.90 0.738

0.95 0.749

1.00 0.760

1.05 0.771

1.10 0.782

1.15 0.792

1.20 0.802

1.25 0.812

1.30 0.821

1.35 0.830

1.40 0.839

1.45 0.847

1.50 0.856
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chi-squared distribution. This assumption about the variance probably could 
not hold for an ordinal response. A solution to the problem is to form a boot-
strap distribution for the sample variance for a particular example and from 
this take a 95th percentile. We can estimate this bootstrap distribution by 
sampling with replacement from the trial on which the sample size calcula-
tion was based. For each sample we can estimate the variance. If we repeated 
the sampling a large number of times we would form a bootstrap distribu-
tion. The upper 95th percentile from this bootstrap distribution could then 
be used to investigate the sensitivity of a study.

14.3.4.1 Worked Example 14.8: Full Ordinal Scale

Revisiting Worked Example 14.1 in which the sample size was estimated 
to be 188 patients per arm, the estimate of the variance used in the sam-
ple size calculation was 6.089. Through a bootstrap sample of 10,000 drawn 
with replacement from the original data used for the sample size calculation 
(based on 266 patients) the 95th percentile was estimated as 6.119, which if 
put into (14.10) would give power of 89.9%, hardly a decrease at all.

TABLE 14.8

Sample Sizes Estimated Using the Standardised 

Difference and Normal Methodology and Using 

P(A B) and Noether’s Method Assuming the 

Outcome Is Normally Distributed
 

P(A B) Noether Normal
  

0.05 0.514 8808 8406

0.10 0.528 2206 2102

0.15 0.542 982 934

0.20 0.556 554 526

0.25 0.570 356 338

0.30 0.584 250 234

0.35 0.598 184 172

0.40 0.611 142 132

0.45 0.625 114 104

0.50 0.638 92 86

0.55 0.651 78 70

0.60 0.664 66 60

0.65 0.677 56 50

0.70 0.690 50 44

0.75 0.702 44 38

0.80 0.714 40 34

0.85 0.726 36 30

0.90 0.738 32 26

0.95 0.749 30 24

1.00 0.760 26 22
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Table 14.9 gives a summary of the sensitivity assessment along with 
repeated calculations assuming the same distribution of responses was 
observed but drawn from studies with sample sizes of 50, 100, 266 (the actual 
sample size) and 1000.

14.3.4.2 Worked Example 14.9: Four-Point Scale

In Worked Example 14.3 for the same effect size as in Worked Example 14.2 
the 22-point scale was reduced to 4 points (using clinical cut-offs) for ease of 
calculations. The estimated variance as a result was increased to 6.796, which 
increased the sample size to 210 patients. A bootstrap 95th percentile for the 
variance is estimated as 7.041, which if it was nearer the true variance would 
mean the power was closer to 89.1%.

Table 14.10 gives a summary of the sensitivity assessment along with 
repeated calculations for different sample sizes. A point worth highlighting 
from this table is that although, in terms of the initial sample size calculation, 
discarding categories does not have a major effect, by comparing Table 14.10 

TABLE 14.9

Sensitivity Analysis for Worked Example 

Superiority Study Assuming All Categories 

Are Used in the Calculations
 

Sample Size 95th Percentile Power
 

50 6.296 0.891

100 6.156 0.898

266 6.125 0.899

1,000 6.101 0.900
 

Note: The estimated 95th percentiles for the variance 

were calculated through bootstrapping.

TABLE 14.10

Sensitivity Analysis for Worked Example 

Superiority Study Assuming Four Categories 

Are Used in the Calculations
 

Sample Size 95th Percentile Power
 

50 8.522 0.826

100 7.251 0.882

266 7.041 0.891

1,000 6.911 0.896
 

Note: The estimated 95th percentiles for the variance 

were calculated through bootstrapping.
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with Table 14.9 it does seem that calculations can be sensitive to the assump-
tions about the variance.

14.3.5 Calculations Taking Account of the Imprecision 
of the Estimates of the Population Effects 
Used in the Sample Size Calculations

If there is a wish to account for the imprecision in the sample variance in the 
calculations, then the following result,

 

1
1

0 998
0 5

2

.
.

(log ( )) /[ (log( ))]n OR Var ORA peerc

A

Z

n OR Var OR

1 2

2

/

(log ( )) /[ (log( )))] /
.

.

perc
perc Z1 2

0 001

0 9998

,

  
  (14.11)

can be applied, and the sample size can be estimated through numerical 
methods. Remember that for binary data in previous chapters values for 
[ (log( ))]Var OR perc were estimated through the percentiles from the control 
prevalence—from which the variance and sample size were based.

To assess sensitivity it was recommended that a bootstrap distribution be 
built around the variance and a 95th percentile taken from this. It is now 
recommended that the same arguments be extended to provide values for

[ (log( ))]Var OR perc
to be put into (14.11). To do this, carry out the following 

steps:

 1. Generate an empirical bootstrap distribution for [ (log( ))]Var OR perc 
through sampling with replacement from the original distribution.

 2. Rank the empirical distribution of [ (log( ))]Var OR perc in order of size.

 3. Take the smallest value as the first percentile, second smallest as 
the second percentile, and so on.

 4. Use these empirical percentiles in (14.11) and calculate the average 
power across these for a given sample size.

 5. Iterate the sample size until the required power is reached.

It is again easy to highlight the calculations through a worked example.

14.3.5.1 Worked Example 14.10: Full Ordinal Scale

Remember the worked example in which a trial was designed with a cal-
culated sample size of 188 patients per arm. The variance of 6.089 was esti-
mated from a trial of 266 evaluable patients. Forming an empirical bootstrap 
distribution of 10,000 drawn with replacement from the original data for the 
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percentiles for the variance (14.11) also gives 188 patients per arm. Table 14.11 
gives a summary of the sample size calculations along with repeated calcu-
lations assuming the same distribution of responses observed was drawn 
from sample sizes of 10, 15, 50, 100 and 266 (the actual sample size).

14.3.5.2 Worked Example 14.11: Four-Point Scale

Reducing the scale to four points increases the sample size estimate to 210 
patients. Taking into account the original variance was estimated from 266 
patients, through bootstrapping, and (14.11) also gives a sample size of 210.

Table 14.12 gives a summary of the sample calculations along with 
repeated calculations assuming the bootstrap sample was taken from dif-
ferent sample sizes. It is worth noting that in comparison to Table 14.11 the 
imprecision of the variance estimate (assessed through the original sample 
size from which the estimate was drawn) has greater effect on the four-point 
scale. When using all the categories, accounting for the imprecision has lit-
tle effect on the sample size calculations (for the case study described), so 
this chapter uses the four-point scale in worked examples in the remainder 
of the chapter.

TABLE 14.11

Sample Sizes for Worked Example Superiority Study 

Assuming All Categories Are Used in the Calculations
 

Original Sample Size Calculated Sample Size
 

10 196

25 191

50 189

100 189

266 188
 

Note: The sample sizes were estimated taking percentiles for 

the variance calculated through bootstrapping.

TABLE 14.12

Sample Sizes for Worked Example Superiority Study 

Assuming Four Categories Are Used in the Calculations
 

Original Sample Size Calculated Sample Size
 

10 234

25 218

50 214

100 212

266 210
 

Note: The sample sizes were estimated taking percentiles for the 

variance calculated through bootstrapping.
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14.3.6 Cross-over Trials

14.3.6.1 Sample Sizes That Are Estimated Assuming 
That the Population Effects Are Known

Remember from Chapter 10 how the methodology for parallel group trials 
for a binary response could be generalised to that for cross-over trials when 
the data are binary. The practical consequence was that equivalent effect 
sizes could be used, and the sample size for one arm of a parallel group trial 
could be taken as the total sample size for a cross-over.

The same principles as applied to binary data can be extended to ordinal 
data through applying the results of Agresti (1993, 1999). Table 14.13 gives a 
table of hypothetical cross-over data with each cell of the 4  4 table derived 
from the marginal totals.

Table 14.14 gives the 2  2 tables around each cut-off on the ordinal scale 
corresponding to Table 14.13. Under the assumption of proportional odds the 
odds ratios from each of these tables should equal each other. Also extending 
the work from Chapter 10 the odds ratios from each of these tables will also 
approximately equal the equivalent odds ratios calculated from the marginal 
totals, that is, the odds ratio from a parallel group trial.

To obtain an overall estimate of the odds ratio Agresti (1993, 1999) gave the 
following result:
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where i and j are the row and column numbers, respectively, and ij corre-
sponds to the cell counts (see Table 14.13). The variance for (14.12) is defined as
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which can be rewritten in terms of the cell probabilities pij as
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(14.14)

TABLE 14.13

Summary of Hypothetical Cross-over Trial
  

Treatment B

1 2 3 4
 

Treatment A 1 11 12 13 14 A1

2 21 22 23 24 A2

3 31 32 33 34 A3

4 41 42 43 44 A4

B1 B2 B3 B4 1
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By definition this odds ratio would equate to that we would expect from 
a parallel group study, which is a useful result. To calculate the required 
sample size we could equate (14.14) and (14.12) with (14.1) to give a sample 
size estimate for the total sample size of the form
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(14.15)

Again it is best to highlight the calculations through a worked example.

14.3.6.2 Worked Example 14.12: Full Ordinal Scale

Suppose an investigator wishes to design a trial in which the outcome is a 
four-point ordinal response. The anticipated responses on the control treat-
ment (treatment A) are given in the final “overall” column of Table 14.15. The 
effect size of interest is an odds ratio of 0.56. From this odds ratio the antici-
pated responses for the investigative treatment are given in the final row, 
assuming proportional odds of the marginal responses. The Type I and Type II 
errors are set at 5% and 10%, respectively.

TABLE 14.14

Summary of Hypothetical Cross-over Trial Revisited

a. First Cut-off

Treatment B
1 2  3  4
 

Treatment A 1 p11 p12  p13  p14 QA1

2  3  4 p21  p31  p41 p22  p23  p24  p32  p43 

 p44  p42  p43  p44

1 − QA1

QB1 1 − QB2 1
 

b. Second Cut-off

  Treatment B

1  2 3  4
 

Treatment A 1  2 p11  p12  p21  p22 p13  p14  p23  p24 QA2

3  4 p31  p32  p41  p42 p33  p34  p43  p44 1 − QA2

QB2 1 − QB2 1
 

c. Third Cut-off

  Treatment B

1  2  3 4
 

Treatment A 1  2  3 p11  p12  p13  p21  p22 

 p23  p31  p32  p33

p41  p42  p43 QA3

4 p41  p42  p43 p44 1 − QA3

QB3 1 − QB3 1
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The individual cells are derived through multiplying the marginal totals. 
From these individual cells and through using (14.15) the total sample size 
is estimated as 229 patients. There are anticipated to be 31.1% concordant 
responses (from the diagonal), so from this the discordant sample size could 
be estimated as 161 patients.

14.3.6.3 Worked Example 14.13: Applying Parallel Group Methodology

In Chapter 10, for binary data the methodology for a parallel group trial was 
extended to that for cross-over trials in which the sample size per arm calcu-
lated for a parallel group study was taken as the total sample for a cross-over 
study. Applying the same arguments to the ordinal case, using the marginal 
totals as the basis for the sample size calculation and (14.3) the total sample 
size is estimated to be 213 patients or 149 discordant patients. This approach 
gives a sample size around 7% lower than using (14.15).

14.3.6.4 Worked Example 14.14: Applying Binary Methodology

Julious and Campbell (1998) highlighted that we can simplify our calcula-
tions by ignoring the ordinal nature of the data, dichotomising the overall 
responses around the direction that subjects are discordant (i.e. either just −1 
or 1) and then using a discordant sample size formula from Chapter 10
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Here, the odds ratio  is the ratio of positive to negative responses.
Before applying (14.16) we must first estimate . For 43% of the patients 

the responses on the control therapy are expected to be higher than on the 
investigative therapy, whilst for 26% of patients the responses are expected 
to be lower on the control. Thus,   could be estimated as 0.60 (approximately 
the same as 0.56, the treatment effect from the initial calculations), and an 
estimate of the discordant sample size from (14.16) is 164 patients, a little 
higher than from (14.15).

TABLE 14.15

Summary of Cross-over Trial for Worked Example
 

Treatment B

1 2 3 4 Overall
 

Treatment A 1 0.011 0.021 0.035 0.013 0.080

2 0.026 0.051 0.084 0.031 0.191

3 0.064 0.125 0.208 0.076 0.473

4 0.034 0.068 0.113 0.041 0.256

Overall 0.134 0.265 0.439 0.162      1
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14.3.7 Sensitivity Analysis about the Estimates of the Population 
Effects Used in the Sample Size Calculations

Similar to parallel group data to assess the sensitivity of a trial to the esti-
mate of the variance bootstrapping can be applied to get an estimate of an 
upper percentile for the sample variance. This plausibly high value for the 
variance can be put into (14.15) written in terms of power,

 1
2

1 2( (log ) / (log( )) ),/n OR Var OR Z  
(14.17)

to get an assessment of the sensitivity of the study.

14.3.7.1 Worked Example 14.15

In Worked Example 14.12 suppose that the original data, which pro-
duced a variance estimate of 7.30, had been estimated from a trial with 
100 patients. Bootstrapping on the observed data produced a bootstrap 
95th percentile estimate of 7.90, a plausible high estimate of the variance, 
8.2% higher than used in the sample size calculation. If this value were 
applied to (14.17), then the power would be reduced 87.7%. Hence, the 
study seems reasonably robust to assumptions about the variance used in 
the calculations.

14.3.8 Calculations Taking Account of the Imprecision 
of the Estimates of the Population Effects 
Used in the Sample Size Calculations

To account for the imprecision of the sample variance in the estimate of the sam-
ple size, similar to parallel group trials, the following result can be applied:
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(14.18)

where the percentiles for the Var(log(OR)) are estimated from an empirical 
bootstrap distribution derived from the original data on which the variance 
estimate was based.

14.3.8.1 Worked Example 14.16

For Worked Example 14.12, to allow for the fact that the variance was esti-
mated from 100 subjects the sample size would need to be increased by 2 to 
231 patients total.
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14.4 Non-inferiority Trials

Although this chapter discusses sample size calculations for non-inferiority 
trials, and equivalence in a separate discussion trials, for ordinal data for 
such trials these calculations are not recommended. The reason for this is 
that although the data, as collected, are ordinal in form, in many ways for 
non-inferiority and equivalence trials this is the wrong scale on which to 
base our inference. The rationale for this is due to the objective of the trial.

For a superiority trial the objective is to assess whether two populations 
differ. This assessment is done primarily through a P-value. When analysing 
ordinal data there are a number of ways of determining this P-value. In this 
chapter the concentration has been on methodologies based on the assump-
tion of proportional odds. Remember here we assume that that the odds ratio 
for each cumulative 2  2 is equal across all k categories, that is, OR1  OR2 
OR3  …  ORk. In practice the individual observed odds ratios will deviate 
slightly around the overall odds ratio. However, the overall estimate, and 
inference, will hold.

For non-inferiority, and equivalence, trials we wish to determine whether 
two populations do not differ. This assessment is primarily done through a 
confidence interval by which, for a non-inferiority trial, we wish to determine 
whether the lower bound is greater than some prespecified non-inferiority 
margin. As discussed in previous chapters, this is operationally the same as 
doing a one-sided test. However, it is the determination and interpretation 
of this non-inferiority margin that is the issue here. In previous chapters 
the issues with determining non-inferiority margins were highlighted; in 
this chapter it is also highlighted how prespecified cut-offs could be used to 
determine a treatment effect for designing a superiority trial.

Extending these arguments we can determine non-inferiority limits for 
ordinal data. This is when the crux of the problem is encountered because 
for a non-inferiority trial if a cut-off is used to determine the non-inferiority 
limit then it is about this that interpretation it could be argued would 
need to be made. Obviously we can assume proportional odds, and that 
OR1  OR2  OR3  …  ORk. However, as highlighted previously in prac-
tice individual observed odds ratios will deviate at different cumulative 
cut-offs around an overall effect. This could be suboptimal if the observed 
odds ratio around the clinically meaningful cut-off is approaching the 
non-inferiority limit.

The HADS highlights this point as a score of 0–7 would, for example, indi-
cate that a patient is assessed as ‘Normal.’ Hence, there would be no point 
demonstrating non-inferiority with an overall assessment of the odds ratio 
if it cannot be proven at the clinically meaningful cut-offs of ‘Normal’ if this 
cut-off is important.
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To resolve such a problem obviously we could do some form of step-down 
procedure. First test the overall odds ratio and if non-inferior test the odds 
ratio around a cut-off for non-inferiority. However, such an approach would 
be driven by the least-efficient comparison (i.e. the one on the dichotomous 
cut-off).

In a roundabout way, therefore, what we are saying is that for non-infe-
riority trials it is operationally easier to design and analyse them as if they 
were binary, using the methods described in Chapter 11, about the clinically 
meaningful cut-offs (or several dichotomous cut-offs simultaneously as for 
HADS). This has an obvious adverse effect on the sample size, as highlighted 
in the discussions on superiority trials earlier in this chapter; however, non-
inferiority trials are conservative by nature, and our approach should reflect 
this. The remainder of this section briefly describes the calculations as if the 
trial will be designed and analysed on the ordinal scale.

14.4.1 Parallel Group Trials

14.4.1.1 Sample Sizes That Are Estimated Assuming 
That the Population Effects Are Known

Remember the result for non-inferiority studies from Chapter 1
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Here d here is the non-inferiority limit of interest,  is the anticipated mean 
difference and Var(S) is the estimated sample variance for the log odds ratio 
for an ordinal response.

An estimate of the variance for the log odds ratio can be made from 
(Whitehead, 1993),
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where i  is the average response for each outcome category. By equating 
(14.19) with (14.20) we require
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where d is the non-inferiority limit, k is the number of categories and log(OR) 
is an estimate of the difference between treatments.
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14.4.1.2 Sensitivity Analysis about the Variance That 
Is Used in the Sample Size Calculations

To assess the sensitivity of the study to the variance used in the calculations 
(14.21) could be rewritten in terms of power as
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The power could then be assessed a priori to a highly plausible value of the 
variance, determined through bootstrapping, to determine the study’s sensi-
tivity to the assumptions about the sample variance.

14.4.1.3 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

To account for the imprecision in the variance estimate used in the sample 
size calculations the following result could be used:
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The percentiles for Var(log(OR)) are estimated through bootstrapping.

14.4.2 Cross-over Trials

The arguments for superiority trials could be extended and parallel method-
ologies extended to calculate sample sizes for cross-over trials. For complete-
ness, cross-over methodologies are presented.

14.4.2.1 Sample Sizes That Are Estimated Assuming 
That the Population Effects Are Known

To calculate the sample size for a cross-over non-inferiority trial for ordinal 
data the following result could be used:
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where OR and Var(log(OR)) are as defined by (14.12) and (14.14), respectively.
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14.4.2.2 Sensitivity Analysis About the Variance That 
Is Used in the Sample Size Calculations

To assess the sensitivity of the study to the variance used in the calculations 
(14.24) could be rewritten in terms of power as
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with a plausibly high value used, estimating from bootstrapping, to assess 
the study’s sensitivity.

14.4.2.3 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

To account for the imprecision in the variance estimate used in the sample 
size calculations use this result
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where the percentiles for Var(log(OR)) are estimated through bootstrapping.

14.5 As-Good-as-or-Better Trials

The issues of as-good-as-or-better trials were discussed in detail in previous 
chapters, and these arguments can be extended to ordinal data. The one issue 
to highlight is that in designing such trials we may be undertaking two differ-
ent types of sample size calculation, one assuming the data are binary for the 
non-inferiority calculation and one assuming they are ordinal for superiority 
calculations. Obviously it would be the non-inferiority calculation that would 
drive the sample size if there is a dichotomisation for this assessment.

14.6 Equivalence Trials

The same issues for non-inferiority trials discussed in this chapter generalise 
to sample size calculations for equivalence trials with ordinal responses. If 
practical it is recommended that the data be treated as a binary response 
around an ordinal cut-off (such as for HADS as discussed), and the method-
ologies described in Chapter 12 for binary data can be used.
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14.6.1 Parallel Group Trials

14.6.1.1 Sample Sizes That Are Estimated Assuming 
That the Population Variance Is Known

14.6.1.1.1 General Case

Remember again that the variance about the log odds ratio can be defined as 
(Whitehead, 1993)
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where i is the average response on each outcome category, and k is the num-
ber of categories. Consequently an estimate of the sample size for a given 
power can be estimated from
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where d is the equivalence limit, k is the number of categories and log(OR) is 
an estimate of the difference between treatments.

14.6.1.1.2 Special Case of No Treatment Difference

As with equivalence trials discussed in previous chapters when an assump-
tion is made of no true difference between treatments the calculations are 
simplified—with a direct estimate of the sample size possible. With the 
assumption of no true difference between treatments (equivalent to OR  1) 
the power can be estimated from
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whilst a direct estimate of the sample size can be obtained from
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14.6.1.2 Sensitivity Analysis about the Variance That 
Is Used in the Sample Size Calculations

As with superiority and non-inferiority trials discussed in the chapter, to 
assess the sensitivity of a study to assumptions about the sample variance 
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the power, for the same sample size, could be assessed from (14.28) using a 
plausibly high value of the variance. This highly plausible value for the vari-
ance could be taken as a 95th percentile from a bootstrap sample.

14.6.1.3 Calculations Taking Account of the Imprecision of the 
Variances Used in the Sample Size Calculations

The sample size for an equivalence study accounting for the imprecision of 
the sample variance can be estimated from
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where 1 and 2 are defined, respectively, as
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As discussed in this chapter the percentiles for the variance used in the cal-
culation are estimated through bootstrapping.

14.6.2 Cross-over Trials

The arguments for superiority and non-inferiority trials can be extended 
to equivalence trials and parallel group methodologies applied. Cross-over 
results are presented for completeness.

14.6.2.1 Sample Sizes That Are Estimated Assuming 
That the Population Variance Is Known

14.6.2.1.1 General Case

An estimate of the sample size for a given power can be estimated from
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where OR and Var(log(OR)) are as defined by (14.12) and (14.14), respectively.
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14.6.2.1.2 Special Case of No Treatment Difference

For the special case of no true difference between treatments (equivalent to 
OR  1) the power can be estimated from
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whilst a direct estimate of the sample size can be obtained from
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14.6.2.2 Sensitivity Analysis about the Variance That 
Is Used in the Sample Size Calculations

As described in this chapter the sensitivity of a study to its variance esti-
mate can be determined through bootstrapping (from the original data from 
which the variance is estimated) to calculate a highly plausible value for the 
variance. This power of the study could then be determined through (14.32) 
to assess the sensitivity of the study.

14.6.2.3 Calculations Taking Account of the Imprecision of the 
Variances Used in the Sample Size Calculations

The sample size for an equivalence study accounting for the imprecision in 
the sample variance can be estimated from
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where 1 and 2 are defined, respectively, as
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where the percentiles for [Var(log(OR))] are estimated through bootstrapping.
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14.7 Estimation to a Given Precision

14.7.1 Parallel Group Trials

14.7.1.1 Sample Sizes That Are Estimated Assuming 
That the Population Variance Is Known

In this chapter detailed sample size derivation for efficacy trials with ordered 
categorical endpoints have been given. This work can be extended to trials 
based on precision. For ordered categorical data the difference between two 
regimens may also be expressed in terms of an odds ratio
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(14.36)

A ( )1 100% confidence interval for log(d) can be estimated using the 
variance (Whitehead, 1993)
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Therefore, for a given half confidence interval width w around the odds ratio 
this condition must be met to obtain the sample size per group
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(14.38)

where pi are the expected mean responses for each of the categories on the 
scale. In fact it is an advantage to have the variance estimated from the mean 
responses here. This is because for estimation trials the objective is to esti-
mate possible differences between treatment, and as such a priori it is reason-
able to assume that the response on each treatment is unknown. What is 
more likely to be known is the anticipated mean response.

14.7.1.2 Worked Example 14.17

A pilot study is being planned to estimate the odds ratio between comparator 
and control regimens in which the primary endpoint is an ordered categori-
cal outcome with four points on the scale. The wish is to quantify the odds 
ratio within 55% (i.e. w  55%). It is anticipated that the mean responses 
across the scale are equal, that is, p p p p1 2 3 4 0 25. . Thus, the sample 
size required is 39 patients per arm.



244 Sample Sizes for Clinical Trials

14.7.1.3 Sensitivity Analysis about the Variance That 
Is Used in the Sample Size Calculations

In assessing sensitivity of a precision-based trial instead of interrogating the 
power of the study to highly plausible values for the variance we instead 
interrogate the loss in precision. This could be done through rewriting (14.38) 
in terms of precision (assuming w  1):
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As with other calculations in this chapter the highly plausible value for the 
variance is calculated through bootstrapping.

14.7.1.4 Worked Example 14.18

The estimated variance used in Worked Example 14.17 was 6.4. Suppose that 
this was based on data from just 25 patients. Bootstrapping produces an esti-
mate for the 95th percentile for the variance of 6.87, a 7.4% increase. This will 
equate to the precision in the point estimates reducing to 56.1%.

14.7.1.5 Calculations Taking Account of the Imprecision of the 
Variance Used in the Sample Size Calculations

To account for the imprecision in the variance estimate for sample size cal-
culations we could use
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where the percentiles for Var(log(OR)) are estimated through bootstrapping.

14.7.1.6 Worked Example 14.19

Accounting for the fact that the original variance was estimated from 25 
patients in the sample size calculation would increase the sample size to 40 
patients from the 39 previously calculated.

14.7.2 Cross-over Trials

There is a big issue in the calculation of sample sizes for precision-based cross-
over trials in that the results from (14.12) and (14.14) require information on 
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individual cell counts, which a priori we would not be expected to know but 
would in fact be trying to estimate. In this chapter it was highlighted how to 
estimate the sample size for other types of trials (superiority, non-inferiority 
and equivalence); we could use the sample size for parallel group trials and 
take the sample size per arm to be the total sample size for a cross-over trial. 
This would potentially underestimate the sample size a little. However, as 
precision-based trials are quite small, in absolute terms the underestimation 
would be quite small. It is therefore recommended to use the parallel group 
methodologies described in this section of the chapter to estimate the total 
sample size for a precision-based trial.

   Key Messages

Sample size calculations for trials in which the primary end-
point is ordinal responses are relatively straightforward.
The approach of Whitehead makes no assumptions on the dis-
tributional form of the data but makes the assumption of pro-
portional odds.
The approach of Noether makes no assumptions about the dis-
tributional form of the data but requires the data to be (rela-
tively) continuous with few ties.
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15
Sample Size Calculations for Clinical 
Trials with Survival Data

15.1 Introduction

In this book methodologies have been described by which the primary end-
point was anticipated to take a Normal form, to be binary or to be ordinal. 
In clinical trials survival-type data are common primary endpoints if the 
trial is concerned with investigating the survival experience of the patients. 
Usually this survival experience is expressed in terms of survival status (e.g. 
alive or dead; recurred or recurrence free) and survival time (e.g. time to 
death; time to recurrence).

If the event of interest was observed in all subjects, then the analysis, and 
hence design, would be relatively straightforward as we would have a contin-
uous primary endpoint with continuous methodologies applicable. However, 
most studies usually finish some fixed time after study start (e.g. 1 year) such 
that the event of interest is not observed in all subjects. The effect of this is 
that applying conventional methods for continuous endpoints would ignore 
subjects in whom the event was not observed.

Conversely if the data were treated as binary with the primary analy-
sis based on a comparison of survival status by treatment, time would be 
ignored. A survival analysis therefore accounts for the survival experience 
of subjects not just by investigating whether the event of interest has been 
observed in subjects but also the time to this event. Subjects in whom the 
event has not been observed are treated as censored with the last follow-up 
time value used in the analysis. A censored subject is therefore defined as a 
subject for whom the event has not happened by the last follow-up time.

Figure 15.1 gives a graphical illustration of survival experience of subjects 
described through a Kaplan-Meier plot. The x axis is the follow-up time for 
the study, while the y axis is the cumulative survival experience of subjects 
in the trial. The two lines within the graph indicate the two illustrative treat-
ment groups with the steps in each line being when an event occurred.

A planned survival analysis, and hence sample size calculation, depends 
on whether the event of interest is negative (e.g. death), for which a propor-
tional hazards approach would be applied, or positive (e.g. cure), for which 
an accelerated failure time approach would be applied. For the former it is 
desirable to delay the time to when the event occurs, and a formal statistical 
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test would be done through a Log-rank test. For the latter it is desirable to 
speed up the time to when the event occurs, and a formal statistical test 
would be through a Generalised Wilcoxon test.

This chapter describes sample size calculations for cases for which the 
event is negative and positive. The emphasis in this chapter is on parallel 
group trials.

15.2 Superiority Trials

15.2.1 Primary Endpoint Is Negative

Suppose the event of interest is a negative, for example, death or recurrence, 
such that the primary objective of the trial is to delay the event. The objec-
tive if the primary endpoint is negative would therefore be to delay the time 
to the primary event. The primary analysis for such a response would be a 
Log-rank test (Collett, 1994).

Now suppose the survival distributions for the two arms of the trial have 
instantaneous death rates of lA for treatment A and lB for treatment B. Now 
from this the hazard ratio (HR) is defined as

 HR = lA/lB. (15.1)

In terms of the hazard ratio the null H0 and alternative H1 hypotheses 
would be of the form
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FIGURE 15.1 Graphical illustration of survival data.
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H0: The survival experience for both treatment groups is the same (HR  1).

H1: The survival experience for both treatment groups differs (HR  1).

If the hazard ratio does not change with time, then it can be estimated by

 

HR A

B

log

log
,

 
(15.2)

where pA and pB are two survival rates at some fixed time point. Assuming an 
exponential survival an alternative formula for the hazard ratio is to derive it 
in terms of the median survival terms for each treatment:
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(15.3)

where MA and MB are the median survival times on A and B, respectively.
Note if the median cannot be estimated, then the hazard ratio could be 

defined in terms, say, of the 75th percentile for each treatment group.

15.2.1.1 Sample Size Calculations: Number of Events

15.2.1.1.1 Method 1: Assuming Exponential Survival

When calculating the sample sizes at the simplest level the calculations 
described for binary data in this book could be applied. However, this 
approach would ignore the survival times. A more plausible approach would 
be to use the methodologies for Normal data for the (probably logged) sur-
vival times. However, this approach would ignore the censored subjects, 
meaning that the sample size would be just for the number of events and not 
the total sample size.

Approaches that account for the overall survival experience were dis-
cussed by Machin et al. (1997). A common method is to assume that we have 
exponential survival. Under this assumption if we let T be the survival time 
random variable such that for treatment A we have

 
S t P T t e At( ) ( ) ,  (15.4)

where lA is constant and does not change with t. From (15.4) we get

 MA = loge2/lA. (15.5)

A similar result for MB can be derived for lB; hence for a given hazard 
ratio the number of events E required in each patient group is approximately 
(Machin et al., 1997)
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Note that (15.6) involves specifying the hazard ratio only. Sample sizes from 
(15.6) are given in Table 15.1 for different hazard ratios.

Note also that (15.6) estimates the number of events in each treatment 
arm. 

For quick results for 90% power and a two-sided significance level of 5% 
we could use
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(15.7)

15.2.1.1.2 Method 2: Proportional Hazards Only

An alternative method for sample size estimation is one that assumes neither 
that we have exponential survival or that lA(t) and lB(t) are constant over 
time t. However, it does assume that there is a constant hazards ratio, HR = lA(t)/
lB(t), over time t, such that the number of events E required in each patient 
group is approximately (Machin et al., 1997)
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Note that as with (15.6) this involves specifying hazard ratio only. As this 
approach makes fewer assumptions than (15.6) it will return slightly larger 
sample size estimates.

TABLE 15.1

Number of Events for Different 

Hazard Ratios for a Two-Sided 5% 

Significance Level and 90% Power

Hazard 
Ratio

Number of 
Events

0.6 81

0.7 166

0.8 423

0.9 1,894

1.1 2,314

1.2 633

1.3 306

1.4 186

1.5 128

1.6 96

1.7 75

1.8 61

1.9 52

2.0 44
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For quick results for 90% power and a two-sided significance level of 5% 
we could use
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(15.9)

15.2.1.2 Worked Example 15.1

We wish to design a study investigating a new investigative treatment 
against a control; the primary endpoint is progression-free survival. It will 
be a 2-year study, and the effect size of interest is a hazard ratio of 1.5 against 
the control (or 0.67 in favour of investigative treatment). For a two-tailed level 
of significance of 5% and 90% power the sample size (in terms of number of 
events) assuming exponential survival would be 128 events per arm (from 
Table 15.1).

If we had used the quick result (15.7), which also assumes exponential 
survival, we also would have estimated the sample size to be 128 events 
per arm.

If we assumed proportional hazards only and not assumed exponen-
tial survival, the sample size estimate would be 132 events per arm (from 
Table 15.2), a little greater than by assuming an exponential survival.

If we had used the quick result (15.9), and also not assumed exponential 
survival, we also would have estimated the sample size to be 132 events per 
arm.

TABLE 15.2

Number of Events for Different 

Hazard Ratios for a Two-Sided 5% 

Significance Level and 90% Power

Hazard  
Ratio

Number of  
Events

0.6            85

0.7 169

0.8 426

0.9 1,897

1.1 2,317

1.2 636

1.3 309

1.4 190

1.5 132

1.6 99

1.7 79

1.8 65

1.9 55

2.0 48
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15.2.1.3 Sample Size Calculations: Total Number of Subjects

The results (15.6) and (15.8) give sample sizes for the number of events that 
are independent of the anticipated event rates in the trial. If these results 
were applied, then the study would recruit so we have the specified number 
of observed events. There are obvious advantages to this approach. However, 
for planning purposes (for budgets, for timescales) an estimate of the total 
sample size would also be required.

To estimate the sample size in each group we need to have an estimate of 
the anticipated response rates at the end of the study, pA and pB for treatment  
groups A and B, respectively. Hence, the sample size nA in each group, assum-
ing nA  nB, can be approximated from (Machin et al., 1997)
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which now as well as requiring the hazard ratio also requires the anticipated 
response rates pA and pB. From (15.2), (15.10) can be rewritten as
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15.2.1.4 Loss to Follow-up

A proportion of subjects will be lost to follow-up during the follow-up period 
of the study. Such subjects will be classed as censored in the analysis but will 
have an impact on the total per group sample size. If we therefore anticipated 
a proportion w subjects to be lost to follow-up, then we would need to adjust 
the total sample size per group in (15.10) to be
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(15.12)

where w is the proportion lost to follow-up before the end of the study.
Note that this is quite a simple calculation. More sophisticated calculations 

are undertaken in another section.

15.2.1.5 Worked Example 15.2

Following Worked Example 15.1, 70% of patients are expected to survive in the 

control group. Using the result HR A Blog /log  we have log log /B A HR  
and hence an estimate of 79% of subjects expected to survive on the inves-
tigative treatment. Based on these data the anticipated total sample size per 
arm to ensure 132 evaluable is 517.6 or 518 patients total per arm.

If we had anticipated 10% of subjects would be lost to follow-up, then the 
total sample size would be 576 subjects.
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15.2.1.6 Total Sample Size Revisited

So far in this chapter we have done quite simplistic calculations for studies 
with survival endpoints. We have based these calculations simply on the 
anticipated hazards ratio (for the number of events) and the anticipated num-
ber of events (for the total sample size). Due to the practical nature of clinical 
trials the total sample size calculation may be a little more complicated than 
this. We need to get back to basics to explain why.

Figure 15.2 pictorially describes the survival experience of subjects in a 
trial; from the start of treatment some subjects progress to the event (here 
death) or are censored. Actually Figure 15.2 is somewhat artificial as it 
assumes everyone arrives at the same time to be randomised simultaneously 
and then is followed up for observation of whether the event has occurred.

In actuality Figure 15.3 more accurately represents the time course of a 
trial because following the study start subjects are recruited for a period of 
time. This recruitment (accrual) period ends after a period of time, and then 
at a fixed point after this accrual period time the study ends, and subjects 
are analysed. Hence all subjects may be in for a minimum period of time, 
but the actual period of time subjects may have been in the trial may vary 
quite markedly.

Another complicating feature of course is that we have a study end at 
which we need to undertake a statistical analysis. Of course if we waited 
long enough all subjects would reach the survival endpoint (in terms of 
death) in particular, but as illustrated in Figure 15.3, at a given time point we 
undertake a statistical analysis.

Note that some studies actually have a fixed follow-up period during which 
all subjects are followed up for a fixed period of time; other studies have a 
variable follow-up such that, as illustrated in Figure 15.3, subjects have vari-
able follow-up times depending on when in the recruitment window they 
were enrolled.

Died

Censored

Censored

Censored

Died

Died

Start of

Treatment

FIGURE 15.2 Survival endpoints for individual subjects.
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With respect to sample size calculations as discussed throughout Section 
15.2.1, it is the number of events that is of important, and a sufficient num-
ber of subjects should be recruited to ensure a sufficient number of events. 
It is accrual world, however, and decisions need to be made regarding how 
to recruit a sufficient sample size to ensure a target number of events. As 
an extreme you could have a total sample size not much bigger than the 
number of events required and follow up subjects until most have the event, 
which may be a long period of time. The accrual period here may be rela-
tively short. Another extreme would be to have a long accrual period such 
that the total sample size is large relative to the anticipated number of events 
but then a short period of follow-up. In practice a trial would be a balance of 
factors with an appropriate accrual period decided on depending on access 
to patients and budgetary considerations.

So the situation that we are in now is that we wish to estimate a sample 
size given that the total length of the study is T, and we will be accrualling 
patients for a period of time R. For this situation we need to multiply (15.6) 
or (15.8) by
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If we assumed a uniform recruitment rate, then we would have (Crisp and 
Curtis, 2008)
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FIGURE 15.3  Survival endpoints for individual subjects accounting for actual time.
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or to account for loss of follow-up
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where

 lA (loge(pA))/T and lB = (loge(pB))/T (15.18)

are the rates for the two treatments, and u is the rate of censoring. The results 
(15.16) and (15.17) can be simplified by using

 (log ( ))/ .e T  (15.19)

Although they do not look it these are quite simplistic expressions as a 
uniform recruitment rate may be unreasonable. A more realistic assumption 
for recruitment rate would be a truncated exponential, in which case (15.14) 
and (15.15) would, respectively, become (Crisp and Curtis, 2008; Lachin and 
Foulkes, 1986)
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while (15.16) and (15.17) can be rewritten, respectively, as
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where here g  is taken from the probability density (Crisp and Curtis, 2008)
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which is used to model the recruitment rates into the study. If g  0, then the 
recruitment would be faster towards the end of the recruitment period; if  
g  0, recruitment would be faster towards the start (g  0). Here g  would be 
estimated from previous studies numerically through entering entry times 
into
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and finding the value for g  that minimises this. An alternative way to esti-
mate g  from t and R is to use the cumulative density function defined as
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Hence, if you knew the time say that 50% of subjects are expected to be 
enrolled you could set F(t) to be 0.5 and solve (15.26) for g.

15.2.1.7 Worked Example 15.3: Uniform Recruitment

For uniform recruitment we repeat Worked Example 15.1 in which the sam-
ple size was calculated to be 132 events to detect a hazard ratio of 1.5. The 
study was 2 years long with a 3-month accrual phase. With pA and pB as 
the two survival proportions at the end of the study we have from (15.4) lA = 
(loge0.7)/−2 = 0.178 and likewise lB = 0.118. From (15.13) using (15.14) and 
(15.15) we must multiply the evaluable sample size by 4.28, giving a sample 
size of 566 patients per group.

Previously we assumed 10% of subjects would be lost to follow-up, giving 
a rate of v = (loge0.9)/−2 = 0.053. From (15.13) and using (15.16) and (15.17), we 
must multiply the evaluable sample size by 4.49 to give a sample size of 593 
patients per group.

These sample sizes of 566 and 593 are a little conservative compared 
to previous estimates—518 and 576, respectively—but these sample sizes 
account for the fact that we have a 2-year study duration in which 3 months 
are spent on accrual.



Sample Size Calculations for Clinical Trials with Survival Data 257

If we wished we could iterate (15.13) to find, say, a study duration that 
would achieve a sample size that may be consistent with a target sample size. 
For example from Table 15.3 we can see for the same accrual duration but 
with a 3-year study duration we would require 395 subjects or 423 account-
ing for those lost to follow-up. Thus, there is a balance to keep between study 
duration and sample size.

In truth the calculations do look relatively complicated but they are rel-
atively easy to program. For this book Table 15.3 was calculated in Excel. 
Undertaking a range of calculations such as in Table 15.3 could add value to 
discussions within a team designing a trial as the trade-off can be observed 
between study duration and sample size.

15.2.1.8 Worked Example 15.4: Truncated Exponential Recruitment

As discussed in Section 15.2.1.6, the assumption of a uniform entry into the 
trial may be a little simplistic for many reasons, not least because it assumes 
that all centres are enrolling simultaneously into the trial at the start. Suppose 
here we have information from a previous trial on anticipated recruitment 
rates and from (15.25) we estimate g  to be −1.5. From (15.24) we can therefore 
produce Figure 15.4, which gives the percentage of subjects recruited into the 
trial for uniform and truncated exponential distributions. We can see from 
this that the truncated exponential distribution has fewer patients entering 
the trial initially with a greater proportion towards the end of accrual.

For the same assumptions for u , lA and lB Table 15.4 gives the sample size 
estimates for the same scenarios as given in Table 15.3.

For this particular worked example there is no marked difference between 
the two approaches for estimating the total sample size, but recruitment was 
relatively short compared to the duration of the study.

An alternative way to estimate g would be from t and R using (15.26). 
Suppose we were sure that by 11 weeks 50% of subjects would be recruited; 

TABLE 15.3

Sample Sizes for Different Study Durations for Uniform Enrollment

Study  
Duration  

(years)

Accrual 
Duration 

(years)

Estimation from (15.14) 
and (15.15)

Estimation from (15.16) 
and (15.17)

Multiplication  
Factor

Sample 
Size

Multiplication  
Factor Sample Size

2.00 0.25 4.28 566 4.49 593

2.25 0.25 3.84 508 4.05 535

2.50 0.25 3.50 462 3.71 490

2.75 0.25 3.22 425 3.43 453

3.00 0.25 2.99 395 3.20 423

4.00 0.25 2.37 313 2.59 343
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then we could solve for g  in (15.26) to obtain the result. Table 15.5 illustrates 
an extreme calculation.

15.2.1.9 Worked Example 15.5: Uniform and Truncated 
Exponential Recruitment Revisited

This example is a repeat of Worked Examples  15.3 and 15.4 with the same 
assumptions g, u, lA and lB. Here, however, the enrolment period and study 
durations are longer than before, with the accrual period being 2 years. 
Figure 15.5 gives an illustration of the enrolment rates for truncated expo-
nential and uniform enrolment.

Table 15.6 and Table 15.7 give the sample sizes for the study using the enrol-
ment patterns. It is evident from this example that the pattern of enrolment 
had a bigger effect on the total sample size than previously.
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FIGURE 15.4 Entry of subjects into trial for worked example for uniform and truncated 

exponential distribution.

TABLE 15.4

Sample Sizes for Different Study Durations for Truncated Exponential Enrollment

Study  
Duration  

(years)

Accrual  
Duration  

(years)

Estimation from (15.20) 
and (15.21)

Estimation from (15.22) 
and (15.23)

Multiplication  
Factor Sample Size

Multiplication  
Factor Sample Size

2.00 0.25 4.30 568 4.50 595

2.25 0.25 3.85 509 4.06 537

2.50 0.25 3.51 463 3.72 491

2.75 0.25 3.22 426 3.44 454

3.00 0.25 2.99 396 3.21 424

4.00 0.25 2.37 313 2.59 343
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TABLE 15.5
Cumulative Proportion Accrued 

at Different Weeks

Week
Cumulative 
Proportion

 1 0.00

 2 0.01

 3 0.02

 4 0.03

 5 0.05

 6 0.08

 7 0.12

 8 0.17

 9 0.24

10 0.35

11 0.49
12 0.70

13 1.00

TABLE 15.6

Sample Sizes for Different Study Durations for Uniform Enrollment

Study 
Duration 

(years)

Accrual 
Duration 

(years)

Estimation from (15.14) 
and (15.15)

Estimation from (15.16) 
and (15.17)

Multiplication 
Factor Sample Size

Multiplication 
Factor Sample Size

3.0 2 4.09 540 4.31 570

3.5 2 3.38 446 3.60 477

4.0 2 2.90 384 3.13 413

4.5 2 2.57 340 2.80 370

5.0 2 2.32 307 2.55 337

10.0 2 1.39 184 1.66 220

TABLE 15.7

Sample Sizes for Different Study Durations for Truncated Exponential Enrollment

Study 
Duration  

(years)

Accrual 
Duration 

(years)

Estimation from (15.20)  
and (15.21)

Estimation from (15.22)  
and (15.23)

Multiplication  
Factor Sample Size

Multiplication  
Factor Sample Size

3.0 2 5.08 670 5.29 699

3.5 2 3.97 524 4.18 553

4.0 2 3.30 436 3.52 465

4.5 2 2.85 377 3.07 406

5.0 2 2.53 335 2.76 364

10.0 2 1.43 189 1.70 224
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15.2.1.10 Comment on the Results

So far in this book sample size calculations have been investigated for their 
sensitivity to the assumptions made in the calculations. In this chapter we 
describe calculations for the total sample size that seemed to make a lot of 
assumptions in the calculations. The principles of sensitivity analysis still 
hold in this chapter but should be considered on a case-by-case basis.

For example for a study in which the events occur relatively quickly it may 
be appropriate to base recruitment on the number of events and the results 
(15.6) and (15.8) may be applied without consideration to accrual periods and 
so on.

Another extreme would be a study with a long accrual period and study 
duration. Here, the study maybe very sensitive to the assumptions made 
in the calculations, particularly if these are estimated imprecisely, and an 
assessment of study sensitivity, maybe through simulation, would be strongly 
recommended.

15.2.2 Primary Endpoint Is Positive

Simplistically we have split the two types of sample size calculation into 
trials in which the event is negative and, as now, sample size calculations in 
which the event is positive. A more formal distinction would be to separate 
the two types of study in terms of follow-up as studies in which incidence is 
the key primary driver (as discussed in Section 15.2.1) and studies in which 
time is the primary driver.

For example in a survival analysis sometimes the objective is to speed up 
the event (if the event is good). Positive events that could be investigated 
include time to cure, time to remission or time to target level of a biomarker. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Months)

R
ec

ru
it

ed
 (

%
)

FIGURE 15.5 Entry of subjects into trial for worked example for uniform and truncated 

exponential distribution for a longer accrual period.
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The event could also be negative, however, with the objective to assess the 
speed to the particular event such as time to an adverse event.

In this section of the chapter the emphasis is on when the endpoint of 
interest is a positive one.

Keene (2002) described a trial in which the primary objective was time 
to alleviation of influenza symptoms. Figure 15.6 gives a Kaplan-Meier 
plot from this trial. For these data the actual event rate by the end of the 
trial was the same for both treatments, but one treatment had a faster 
onset of action.

Suppose the event of interest is a positive. The null H0 and alternative H1 
hypotheses would be of the forms

H0:  The survival experience for both treatment groups is the same—the 
time to the event is the same in the two groups.

H1:  The survival experience for both treatment groups differs—the 
time to the event is different in the two groups.

For trials in which the objective is to speed up the time to the event the 
primary analysis would be a Generalised Wilcoxon test (Collett, 1994).

For the data summarised in Figure 15.6 Keene (2002) presented the results 
as median survival times, which were 6.0 days for placebo and 4.5 days for 
active treatment.
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An alternative approach would be to model the data through an acceler-
ated failure time model, an approach applied by different authors for similar 
data (Patel, Kay and Rowell, 2006). For data from Keene (2002) if they were 
summarised in terms of an ‘acceleration factor’, equivalent to a ratio of medi-
ans, then the estimate of effect would be 4.5/6.0 = 0.75.

15.2.2.1 Sample Size Calculations: Number  
of Events and Total Sample Size

For data for which the objective is to speed time to event there is no unique 
solution. If we had pre-existing data we could remove the censored subjects 
and apply the following methods:

The method of Whitehead (1993) as described in Chapter 14. The 
disadvantage of this approach is that the calculations depend on 
defining an odds ratio which does not reflect how the data will be 
analysed.

The method of Noether (1987) as discussed in Chapter 14. For contin-
uous data it has the advantage of being distribution free, although it 
does not have too easily interpretable estimates of treatment effect. For 
discrete data (which often include survival data in trials as subjects 
are assessed at fixed times) there can be limitations to the method.

The simplest approach would be to log the survival times and 
assume the data take a log Normal form. The results from Chapters 
3 to 8 could then be applied.

If there is a need to account for censoring in the sample size calcu-
lation, then bootstrapping or simulation could be considered as an 
approach to calculate the sample size. The main advantage of this 
approach is that the sample size calculation may more accurately 
reflect the analysis. 

On a case-by-case level it may be optimal to use one of the methods, 
depending on the study, and then use another approach or two to assess the 
robustness of the sample size estimate.

The same approaches as discussed in Section 15.2.1.6 could be used to cal-
culate the total sample size.

15.2.2.2 Worked Example 15.6: Noether Approach

The data in Table 15.8 are from a pilot study for a new compound (B) to assess 
time (in weeks) to recovery against placebo (A). Assuming the difference 
observed here is the difference of interest, Noether’s method is to be used to 
estimate the anticipated sample size for the main study assuming the two-
sided Type I error is 5%, and Type II error is 10%.

The steps of the calculation are given in Table 15.9.
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Now to find P(A  B) you take 43 and divide it by the multiple of the two 
sample sizes (here 8 and 8); hence P(A  B) = 43/64 = 0.67. Similarly for P(B  A) 
we have 0.33.

Using the approach of Noether the sample size would 60.6 or 61 events on 
each arm.

15.2.2.3 Worked Example 15.7: Normal Approach

The mean difference and standard deviation on the log scale for the data in 
Table 15.8 are 0.23 and 0.452, respectively. Using the sample size approaches 

TABLE 15.8

Data from Pilot Study

Subject Treatment Time

 1 A 13

 2 A 21

 3 A 14

 4 A 28

 5 A 23

 6 A  7

 7 A 15

 8 A 26

 9 B 19

10 B 10

11 B 17

12 B 11

13 B  6

14 B 24

15 B 12

16 B 18

TABLE 15.9

Steps for the Sample Size

Step 1 Arrange the observations in order of magnitude:

(A)     7        13 14 15        21 23    26 28

(B)       6   10 11 12        17 18 19        24

Step 2 Affix either A or B to each observation:

   B A B B B A AA B B B A A B A A

Step 3 Under each A, write down the number of B’s to the left of it:

   B A B B B A AA B B B A A B A A

    1     4 4 4    7 7   8 8

Under each B, write down the number of A’s to the left of it:

   B A B B B A AA B B B A A B A A

        1  1  1    4  4  4      6

Step 4 Sum the A scores UA  1  4  4  4  7  7  8  8  43 (i.e. A  B 43 times)

Sum the B scores UB  1  1  1  4  4  4 + 6  21 (i.e. B  A 21 times)
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discussed in Chapter 3 the sample size estimate would be 82 events per 
arm.

15.3 Non-inferiority Trials

15.3.1 If Primary Endpoint Is Negative

The number of events E required in each patient group is approximately

 

E
Z Z

HR d

2 1 1
2

2

( )

(log log( ))
,

 
(15.27)

where d is the non-inferiority limit in terms of a hazard ratio. Sample sizes 
from (15.27) are given in Table 15.10 for different hazard ratios.

To estimate the total sample size the approaches described in this chapter 
for superiority trials could be applied.

The one reservation with this approach is that the non-inferiority limit is 
defined in relative terms, which can cause issues. Suppose we anticipate πA 
subjects to survive to a given time. Then from (15.2) we have
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and consequently
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TABLE 15.10

Number of Events for Different Hazard Ratios for a One-Sided 2.5% Significance 

Level and 90% Power

Hazard  
Ratio

Percentage of log (HR)

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25

1.10 1,482 1,608 1,750 1,912 2,100 2,314 2,564 2,858 3,202 3,616 4,114

1.20 406 440 480 524 574 634 702 782 876 988 1,124

1.30 196 214 232 254 278 306 340 378 424 478 544

1.40 120 130 142 154 170 186 206 230 258 292 330

1.50 82 90 98 106 116 128 142 158 178 200 228

1.60 62 68 72 80 88 96 106 118 132 150 170

1.70 48 52 58 62 68 76 84 94 104 118 134

1.80 40 44 46 52 56 62 68 76 86 96 110

1.90 34 36 40 44 48 52 58 64 72 80 92

2.00 28 32 34 38 40 44 50 54 62 70 78



Sample Size Calculations for Clinical Trials with Survival Data 265

Hence on an absolute scale for a constant hazard ratio, the non-inferiority 
limit could be quite different (Table 15.11). Depending on the anticipated 
response rate for pA there therefore may be an incentive to be optimistic or 
pessimistic in defining the non-inferiority limit to maximise it on the abso-
lute scale.

If as discussed in Chapters 6 and 11 we set the study up as a superior-
ity study to detect a small clinical difference but at greater than the nomi-
nal 2.5%, then Table 15.12 gives the sample sizes estimated from (15.6) while 
Table 15.13 gives the sample sizes estimated from (15.8).

TABLE 15.11

Absolute Difference for Different Hazard Ratios and Survival Rates on pA

Hazard Ratio

pA 1.10 1.20 1.30 1.40 1.50 1.75 2.00

0.1 0.023 0.047 0.070 0.093 0.115 0.168 0.216

0.2 0.032 0.062 0.090 0.117 0.142 0.199 0.247

0.3 0.035 0.067 0.096 0.123 0.148 0.203 0.248

0.4 0.035 0.066 0.094 0.120 0.143 0.192 0.232

0.5 0.033 0.061 0.087 0.110 0.130 0.173 0.207

0.6 0.029 0.053 0.075 0.094 0.111 0.147 0.175

0.7 0.023 0.043 0.060 0.075 0.088 0.116 0.137

0.8 0.016 0.030 0.042 0.053 0.062 0.080 0.094

0.9 0.009 0.016 0.022 0.028 0.032 0.042 0.049

TABLE 15.12

Number of Events for Different Hazard Ratios for Various One-Sided Significance 

Levels and 90% Power Assuming Exponential Survival

Hazard  
Ratio

Significance Level

0.025 0.500 0.075 0.100 0.125 0.150 0.175 0.200

1.02 53,590 8,378 37,764 33,506 30,164 27,404 25,050 22,992

1.04 13,662 2,136 9,628 8,542 7,690 6,986 6,386 5,862

1.06 6,190 968 4,362 3,870 3,484 3,166 2,894 2,656

1.08 3,550 556 2,502 2,220 1,998 1,816 1,660 1,524

1.10 2,314 362 1,632 1,448 1,304 1,184 1,082 994

1.12 1,638 256 1,154 1,024 922 838 766 702

1.14 1,226 192 864 766 690 626 574 526

1.16 954 150 674 598 538 488 446 410

1.18 768 120 542 480 432 394 360 330

1.20 634 100 446 396 356 324 296 272

1.22 532 84 376 334 300 272 250 230

1.24 456 72 322 284 256 234 214 196

1.26 394 62 278 246 222 202 184 170

1.28 346 54 244 216 196 178 162 148

1.30 306 48 216 192 172 158 144 132
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15.3.2 If Primary Endpoint Is Positive

As with superiority trials there is no unique solution to the question of sam-
ple sizes if time to event is positive and speeding up to achieve the event is 
desirable. Sample size calculations would need to be done on a case-by-case 
basis. This also will be the case for equivalence and precision trials, so this 
will be the last mention of these types of trial in this chapter.

15.4 Equivalence Trials

15.4.1 If Primary Endpoint Is Negative

The number of events E required in each patient group could generally, 
assuming exponential survival, be estimated from

 

1 2 1E HR d Z
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(15.30)

where d is the equivalence limit in terms of a hazard ratio. To estimate the sam-
ple size you would need to iterate on E to obtain the required sample size.

TABLE 15.13

Number of Events for Different Hazard Ratios for Various One-Sided Levels  

of Significance and 90% Power Assuming Proportional Hazards

Hazard  
Ratio

Significance Level

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

1.02 53,594 43,680 37,766 33,508 30,166 27,406 25,050 22,994

1.04 13,666 11,138 9,630 8,544 7,692 6,988 6,388 5,864

1.06 6,194 5,048 4,366 3,872 34,86 3,168 2,896 2,658

1.08 3,552 2,896 2,504 2,222 2,000 1,818 1,662 1,524

1.10 2,318 1,890 1,634 1,450 1,306 1,186 1,084 994

1.12 1,640 1,338 1,156 1,026 924 840 768 704

1.14 1,228 1,002 866 768 692 628 574 528

1.16 958 782 676 600 540 490 448 412

1.18 772 630 544 482 434 396 362 332

1.20 636 520 448 398 358 326 298 274

1.22 536 438 378 336 302 274 252 230

1.24 458 374 324 288 258 236 214 198

1.26 398 324 280 250 224 204 186 172

1.28 350 284 246 218 198 180 164 150

1.30 310 252 218 194 174 158 146 134
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For the special case of HR = 1 we can estimate the sample size from
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To estimate the total sample size the approaches described in this chapter 
for superiority trials could be applied.

15.5 Precision Trials

15.5.1 If Primary Endpoint Is Negative

The result (15.6) can be adapted by setting b  0.5 to obtain a sample size to 
have the required precision w about the hazard ratio
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For the total sample size the approaches described in this chapter for superi-
ority trials could be applied.

Key Messages

The key driver in the sample size calculation is the number of 
events.
To estimate the total number of patients for each trial assump-
tions need to be made about accrual and censoring.
The longer the follow-up period is, the fewer the subjects that 
may be required in the study.
If the primary objective is to speed up the time to the event, 
then the calculations are not straightforward, and a number of 
methods may need to be applied.
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Appendix

All tables were created using Microsoft Excel

TABLE A.1

One-Sided Normal Probability Values
 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
 

0.00 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414

0.10 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465

0.20 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591

0.30 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827

0.40 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207

0.50 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760

0.60 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510

0.70 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476

0.80 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673

0.90 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109

1.00 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786

1.10 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702

1.20 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853

1.30 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226

1.40 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811

1.50 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592

1.60 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551

1.70 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673

1.80 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938

1.90 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330

2.00 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831

2.10 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426

2.20 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101

2.30 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842

2.40 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

2.50 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480

2.60 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357

2.70 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264

2.80 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193

2.90 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

3.00 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100

3.10 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071

3.20 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050

3.30 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035

3.40 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

3.50 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017

3.60 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011

3.70 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008

3.80 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005

3.90 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003

4.00 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002
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TABLE A.2

Two-Sided Normal Quantities
 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
 

0.00 1.00000 0.99202 0.98404 0.97607 0.96809 0.96012 0.95216 0.94419 0.93624 0.92829

0.10 0.92034 0.91241 0.90448 0.89657 0.88866 0.88076 0.87288 0.86501 0.85715 0.84931

0.20 0.84148 0.83367 0.82587 0.81809 0.81033 0.80259 0.79486 0.78716 0.77948 0.77182

0.30 0.76418 0.75656 0.74897 0.74140 0.73386 0.72634 0.71885 0.71138 0.70395 0.69654

0.40 0.68916 0.68181 0.67449 0.66720 0.65994 0.65271 0.64552 0.63836 0.63123 0.62413

0.50 0.61708 0.61005 0.60306 0.59611 0.58920 0.58232 0.57548 0.56868 0.56191 0.55519

0.60 0.54851 0.54186 0.53526 0.52869 0.52217 0.51569 0.50925 0.50286 0.49650 0.49019

0.70 0.48393 0.47770 0.47152 0.46539 0.45930 0.45325 0.44725 0.44130 0.43539 0.42953

0.80 0.42371 0.41794 0.41222 0.40654 0.40091 0.39533 0.38979 0.38430 0.37886 0.37347

0.90 0.36812 0.36282 0.35757 0.35237 0.34722 0.34211 0.33706 0.33205 0.32709 0.32217

1.00 0.31731 0.31250 0.30773 0.30301 0.29834 0.29372 0.28914 0.28462 0.28014 0.27571

1.10 0.27133 0.26700 0.26271 0.25848 0.25429 0.25014 0.24605 0.24200 0.23800 0.23405

1.20 0.23014 0.22628 0.22246 0.21870 0.21498 0.21130 0.20767 0.20408 0.20055 0.19705

1.30 0.19360 0.19020 0.18684 0.18352 0.18025 0.17702 0.17383 0.17069 0.16759 0.16453

1.40 0.16151 0.15854 0.15561 0.15272 0.14987 0.14706 0.14429 0.14156 0.13887 0.13622

1.50 0.13361 0.13104 0.12851 0.12602 0.12356 0.12114 0.11876 0.11642 0.11411 0.11183

1.60 0.10960 0.10740 0.10523 0.10310 0.10101 0.09894 0.09691 0.09492 0.09296 0.09103

1.70 0.08913 0.08727 0.08543 0.08363 0.08186 0.08012 0.07841 0.07673 0.07508 0.07345

1.80 0.07186 0.07030 0.06876 0.06725 0.06577 0.06431 0.06289 0.06148 0.06011 0.05876

1.90 0.05743 0.05613 0.05486 0.05361 0.05238 0.05118 0.05000 0.04884 0.04770 0.04659

2.00 0.04550 0.04443 0.04338 0.04236 0.04135 0.04036 0.03940 0.03845 0.03753 0.03662

2.10 0.03573 0.03486 0.03401 0.03317 0.03235 0.03156 0.03077 0.03001 0.02926 0.02852

2.20 0.02781 0.02711 0.02642 0.02575 0.02509 0.02445 0.02382 0.02321 0.02261 0.02202

2.30 0.02145 0.02089 0.02034 0.01981 0.01928 0.01877 0.01827 0.01779 0.01731 0.01685

2.40 0.01640 0.01595 0.01552 0.01510 0.01469 0.01429 0.01389 0.01351 0.01314 0.01277

2.50 0.01242 0.01207 0.01174 0.01141 0.01109 0.01077 0.01047 0.01017 0.00988 0.00960

2.60 0.00932 0.00905 0.00879 0.00854 0.00829 0.00805 0.00781 0.00759 0.00736 0.00715

2.70 0.00693 0.00673 0.00653 0.00633 0.00614 0.00596 0.00578 0.00561 0.00544 0.00527

2.80 0.00511 0.00495 0.00480 0.00465 0.00451 0.00437 0.00424 0.00410 0.00398 0.00385

2.90 0.00373 0.00361 0.00350 0.00339 0.00328 0.00318 0.00308 0.00298 0.00288 0.00279

3.00 0.00270 0.00261 0.00253 0.00245 0.00237 0.00229 0.00221 0.00214 0.00207 0.00200

3.10 0.00194 0.00187 0.00181 0.00175 0.00169 0.00163 0.00158 0.00152 0.00147 0.00142

3.20 0.00137 0.00133 0.00128 0.00124 0.00120 0.00115 0.00111 0.00108 0.00104 0.00100

3.30 0.00097 0.00093 0.00090 0.00087 0.00084 0.00081 0.00078 0.00075 0.00072 0.00070

3.40 0.00067 0.00065 0.00063 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 0.00048

3.50 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00037 0.00036 0.00034 0.00033

3.60 0.00032 0.00031 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 0.00023 0.00022

3.70 0.00022 0.00021 0.00020 0.00019 0.00018 0.00018 0.00017 0.00016 0.00016 0.00015

3.80 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 0.00011 0.00010 0.00010

3.90 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00007 0.00007 0.00007 0.00007

4.00 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005 0.00005 0.00005 0.00004
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TABLE A.3

One-Sided Critical Values for a t-distribution
 

Significance Level

df 0.400 0.300 0.250 0.200 0.150 0.100 0.050 0.025 0.010 0.001
 

1 0.325 0.727 1.000 1.376 1.963 3.078 6.314 12.706 31.821 318.309

2 0.289 0.617 0.816 1.061 1.386 1.886 2.920 4.303 6.965 22.327

3 0.277 0.584 0.765 0.978 1.250 1.638 2.353 3.182 4.541 10.215

4 0.271 0.569 0.741 0.941 1.190 1.533 2.132 2.776 3.747 7.173

5 0.267 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.365 5.893

6 0.265 0.553 0.718 0.906 1.134 1.440 1.943 2.447 3.143 5.208

7 0.263 0.549 0.711 0.896 1.119 1.415 1.895 2.365 2.998 4.785

8 0.262 0.546 0.706 0.889 1.108 1.397 1.860 2.306 2.896 4.501

9 0.261 0.543 0.703 0.883 1.100 1.383 1.833 2.262 2.821 4.297

10 0.260 0.542 0.700 0.879 1.093 1.372 1.812 2.228 2.764 4.144

11 0.260 0.540 0.697 0.876 1.088 1.363 1.796 2.201 2.718 4.025

12 0.259 0.539 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.930

13 0.259 0.538 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.852

14 0.258 0.537 0.692 0.868 1.076 1.345 1.761 2.145 2.624 3.787

15 0.258 0.536 0.691 0.866 1.074 1.341 1.753 2.131 2.602 3.733

16 0.258 0.535 0.690 0.865 1.071 1.337 1.746 2.120 2.583 3.686

17 0.257 0.534 0.689 0.863 1.069 1.333 1.740 2.110 2.567 3.646

18 0.257 0.534 0.688 0.862 1.067 1.330 1.734 2.101 2.552 3.610

19 0.257 0.533 0.688 0.861 1.066 1.328 1.729 2.093 2.539 3.579

20 0.257 0.533 0.687 0.860 1.064 1.325 1.725 2.086 2.528 3.552

21 0.257 0.532 0.686 0.859 1.063 1.323 1.721 2.080 2.518 3.527

22 0.256 0.532 0.686 0.858 1.061 1.321 1.717 2.074 2.508 3.505

23 0.256 0.532 0.685 0.858 1.060 1.319 1.714 2.069 2.500 3.485

24 0.256 0.531 0.685 0.857 1.059 1.318 1.711 2.064 2.492 3.467

25 0.256 0.531 0.684 0.856 1.058 1.316 1.708 2.060 2.485 3.450

26 0.256 0.531 0.684 0.856 1.058 1.315 1.706 2.056 2.479 3.435

27 0.256 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 3.421

28 0.256 0.530 0.683 0.855 1.056 1.313 1.701 2.048 2.467 3.408

29 0.256 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 3.396

30 0.256 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 3.385

35 0.255 0.529 0.682 0.852 1.052 1.306 1.690 2.030 2.438 3.340

40 0.255 0.529 0.681 0.851 1.050 1.303 1.684 2.021 2.423 3.307

45 0.255 0.528 0.680 0.850 1.049 1.301 1.679 2.014 2.412 3.281

50 0.255 0.528 0.679 0.849 1.047 1.299 1.676 2.009 2.403 3.261

60 0.254 0.527 0.679 0.848 1.045 1.296 1.671 2.000 2.390 3.232

70 0.254 0.527 0.678 0.847 1.044 1.294 1.667 1.994 2.381 3.211

80 0.254 0.526 0.678 0.846 1.043 1.292 1.664 1.990 2.374 3.195

90 0.254 0.526 0.677 0.846 1.042 1.291 1.662 1.987 2.368 3.183

100 0.254 0.526 0.677 0.845 1.042 1.290 1.660 1.984 2.364 3.174

125 0.254 0.526 0.676 0.845 1.041 1.288 1.657 1.979 2.357 3.157

150 0.254 0.526 0.676 0.844 1.040 1.287 1.655 1.976 2.351 3.145

175 0.254 0.525 0.676 0.844 1.040 1.286 1.654 1.974 2.348 3.137

200 0.254 0.525 0.676 0.843 1.039 1.286 1.653 1.972 2.345 3.131

225 0.254 0.525 0.676 0.843 1.039 1.285 1.652 1.971 2.343 3.127

250 0.254 0.525 0.675 0.843 1.039 1.285 1.651 1.969 2.341 3.123

300 0.254 0.525 0.675 0.843 1.038 1.284 1.650 1.968 2.339 3.118

350 0.254 0.525 0.675 0.843 1.038 1.284 1.649 1.967 2.337 3.114

400 0.254 0.525 0.675 0.843 1.038 1.284 1.649 1.966 2.336 3.111

450 0.253 0.525 0.675 0.842 1.038 1.283 1.648 1.965 2.335 3.108

500 0.253 0.525 0.675 0.842 1.038 1.283 1.648 1.965 2.334 3.107

750 0.253 0.525 0.675 0.842 1.037 1.283 1.647 1.963 2.331 3.101

 1,000 0.253 0.525 0.675 0.843 1.037 1.282 1.646 1.962 2.330 3.098
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TABLE A.4

Two-Sided Critical Values for a t-distribution
 

Significance Level

df 0.500 0.400 0.300 0.250 0.200 0.150 0.100 0.050 0.025 0.010 0.001
 

1 1.000 1.376 1.963 2.414 3.078 4.165 6.314 12.706 25.452 63.657 636.619

2 0.816 1.061 1.386 1.604 1.886 2.282 2.920 4.303 6.205 9.925   31.599

3 0.765 0.978 1.250 1.423 1.638 1.924 2.353 3.182 4.177 5.841   12.924

4 0.741 0.941 1.190 1.344 1.533 1.778 2.132 2.776 3.495 4.604 8.610

5 0.727 0.920 1.156 1.301 1.476 1.699 2.015 2.571 3.163 4.032 6.869

6 0.718 0.906 1.134 1.273 1.440 1.650 1.943 2.447 2.969 3.707 5.959

7 0.711 0.896 1.119 1.254 1.415 1.617 1.895 2.365 2.841 3.499 5.408

8 0.706 0.889 1.108 1.240 1.397 1.592 1.860 2.306 2.752 3.355 5.041

9 0.703 0.883 1.100 1.230 1.383 1.574 1.833 2.262 2.685 3.250 4.781

10 0.700 0.879 1.093 1.221 1.372 1.559 1.812 2.228 2.634 3.169 4.587

11 0.697 0.876 1.088 1.214 1.363 1.548 1.796 2.201 2.593 3.106 4.437

12 0.695 0.873 1.083 1.209 1.356 1.538 1.782 2.179 2.560 3.055 4.318

13 0.694 0.870 1.079 1.204 1.350 1.530 1.771 2.160 2.533 3.012 4.221

14 0.692 0.868 1.076 1.200 1.345 1.523 1.761 2.145 2.510 2.977 4.140

15 0.691 0.866 1.074 1.197 1.341 1.517 1.753 2.131 2.490 2.947 4.073

16 0.690 0.865 1.071 1.194 1.337 1.512 1.746 2.120 2.473 2.921 4.015

17 0.689 0.863 1.069 1.191 1.333 1.508 1.740 2.110 2.458 2.898 3.965

18 0.688 0.862 1.067 1.189 1.330 1.504 1.734 2.101 2.445 2.878 3.922

19 0.688 0.861 1.066 1.187 1.328 1.500 1.729 2.093 2.433 2.861 3.883

20 0.687 0.860 1.064 1.185 1.325 1.497 1.725 2.086 2.423 2.845 3.850

21 0.686 0.859 1.063 1.183 1.323 1.494 1.721 2.080 2.414 2.831 3.819

22 0.686 0.858 1.061 1.182 1.321 1.492 1.717 2.074 2.405 2.819 3.792

23 0.685 0.858 1.060 1.180 1.319 1.489 1.714 2.069 2.398 2.807 3.768

24 0.685 0.857 1.059 1.179 1.318 1.487 1.711 2.064 2.391 2.797 3.745

25 0.684 0.856 1.058 1.178 1.316 1.485 1.708 2.060 2.385 2.787 3.725

26 0.684 0.856 1.058 1.177 1.315 1.483 1.706 2.056 2.379 2.779 3.707

27 0.684 0.855 1.057 1.176 1.314 1.482 1.703 2.052 2.373 2.771 3.690

28 0.683 0.855 1.056 1.175 1.313 1.480 1.701 2.048 2.368 2.763 3.674

29 0.683 0.854 1.055 1.174 1.311 1.479 1.699 2.045 2.364 2.756 3.659

30 0.683 0.854 1.055 1.173 1.310 1.477 1.697 2.042 2.360 2.750 3.646

35 0.682 0.852 1.052 1.170 1.306 1.472 1.690 2.030 2.342 2.724 3.591

40 0.681 0.851 1.050 1.167 1.303 1.468 1.684 2.021 2.329 2.704 3.551

45 0.680 0.850 1.049 1.165 1.301 1.465 1.679 2.014 2.319 2.690 3.520

50 0.679 0.849 1.047 1.164 1.299 1.462 1.676 2.009 2.311 2.678 3.496

60 0.679 0.848 1.045 1.162 1.296 1.458 1.671 2.000 2.299 2.660 3.460

70 0.678 0.847 1.044 1.160 1.294 1.456 1.667 1.994 2.291 2.648 3.435

80 0.678 0.846 1.043 1.159 1.292 1.453 1.664 1.990 2.284 2.639 3.416

90 0.677 0.846 1.042 1.158 1.291 1.452 1.662 1.987 2.280 2.632 3.402

100 0.677 0.845 1.042 1.157 1.290 1.451 1.660 1.984 2.276 2.626 3.390

125 0.676 0.845 1.041 1.156 1.288 1.448 1.657 1.979 2.269 2.616 3.370

150 0.676 0.844 1.040 1.155 1.287 1.447 1.655 1.976 2.264 2.609 3.357

175 0.676 0.844 1.040 1.154 1.286 1.446 1.654 1.974 2.261 2.604 3.347

200 0.676 0.843 1.039 1.154 1.286 1.445 1.653 1.972 2.258 2.601 3.340

225 0.676 0.843 1.039 1.153 1.285 1.444 1.652 1.971 2.257 2.598 3.334

250 0.675 0.843 1.039 1.153 1.285 1.444 1.651 1.969 2.255 2.596 3.330

300 0.675 0.843 1.038 1.153 1.284 1.443 1.650 1.968 2.253 2.592 3.323

350 0.675 0.843 1.038 1.152 1.284 1.443 1.649 1.967 2.251 2.590 3.319

400 0.675 0.843 1.038 1.152 1.284 1.442 1.649 1.966 2.250 2.588 3.315

450 0.675 0.842 1.038 1.152 1.283 1.442 1.648 1.965 2.249 2.587 3.312

500 0.675 0.842 1.038 1.152 1.283 1.442 1.648 1.965 2.248 2.586 3.310

750 0.675 0.842 1.037 1.151 1.283 1.441 1.647 1.963 2.246 2.582 3.304

1,000 0.675 0.842 1.037 1.151 1.282 1.441 1.646 1.962 2.245 2.581 3.300
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TABLE A.5

Chi-Squared Critical Values
 

Significance Level

df 0.999 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.001
 

1 0.000002 0.0002 0.001 0.004 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 10.83

2 0.002 0.020 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 13.82

3 0.02 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 16.27

4 0.09 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 18.47

5 0.21 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 20.52

6 0.38 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 22.46

7 0.60 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 24.32

8 0.86 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.53 20.09 26.12

9 1.15 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 27.88

10 1.48 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 29.59

11 1.83 3.05 3.82 4.57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 31.26

12 2.21 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 32.91

13 2.62 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 34.53

14 3.04 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 36.12

15 3.48 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 37.70

16 3.94 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 39.25

17 4.42 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 40.79

18 4.90 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 42.31

19 5.41 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 43.82

20 5.92 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 45.31

21 6.45 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 46.80

22 6.98 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 48.27

23 7.53 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 49.73

24 8.08 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 51.18

25 8.65 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 52.62

26 9.22 12.20 13.84 15.38 17.29 20.84 25.34 30.43 35.56 38.89 41.92 45.64 54.05

27 9.80 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.19 46.96 55.48

28 10.39 13.56 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 56.89

29 10.99 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 58.30

30 11.59 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 59.70

35 14.69 18.51 20.57 22.47 24.80 29.05 34.34 40.22 46.06 49.80 53.20 57.34 66.62

40 17.92 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 73.40

45 21.25 25.90 28.37 30.61 33.35 38.29 44.34 50.98 57.51 61.66 65.41 69.96 80.08

50 24.67 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 86.66

60 31.74 37.48 40.48 43.19 46.46 52.29 59.33 66.98 74.40 79.08 83.30 88.38 99.61

70 39.04 45.44 48.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 100.43 112.32

80 46.52 53.54 57.15 60.39 64.28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 124.84

90 54.16 61.75 65.65 69.13 73.29 80.62 89.33 98.65 107.57 113.15 118.14 124.12 137.21

100 61.92 70.06 74.22 77.93 82.36 90.13 99.33 109.14 118.50 124.34 129.56 135.81 149.45

125 81.77 91.18 95.95 100.18 105.21 114.00 124.33 135.27 145.64 152.09 157.84 164.69 179.60

150 102.11 112.67 117.98 122.69 128.28 137.98 149.33 161.29 172.58 179.58 185.80 193.21 209.26

175 122.83 134.44 140.26 145.41 151.49 162.04 174.33 187.23 199.36 206.87 213.52 221.44 238.55

200 143.84 156.43 162.73 168.28 174.84 186.17 199.33 213.10 226.02 233.99 241.06 249.45 267.54

225 165.10 178.61 185.35 191.28 198.28 210.35 224.33 238.92 252.58 260.99 268.44 277.27 296.29

250 186.55 200.94 208.10 214.39 221.81 234.58 249.33 264.70 279.05 287.88 295.69 304.94 324.83

300 229.96 245.97 253.91 260.88 269.07 283.14 299.33 316.14 331.79 341.40 349.87 359.91 381.43

350 273.90 291.41 300.06 307.65 316.55 331.81 349.33 367.46 384.31 394.63 403.72 414.47 437.49

400 318.26 337.16 346.48 354.64 364.21 380.58 399.33 418.70 436.65 447.63 457.31 468.72 493.13

450 362.96 383.16 393.12 401.82 412.01 429.42 449.33 469.86 488.85 500.46 510.67 522.72 548.43

500 407.95 429.39 439.94 449.15 459.93 478.32 499.33 520.95 540.93 553.13 563.85 576.49 603.45
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Index

a level of significance, 14

d confidence limits, 14

l elimination rate, 23

m as mean of Normal distribution, 3

s as standard deviation of Normal 

distribution, 3

s 2 as variance of Normal 

distribution, 3

1-probability of Type II error, 10; 

see also Study power

A

ABCs of trial design, 1

Absolute risk difference, 140, 145–146

 equivalence trials with binary 

outcomes, 201–202

 and imprecision of population 

effects, 160

 non-inferiority studies with binary 

outcomes, 182–184

 vs. odds ratio, 190

 parallel group studies with binary 

outcomes, 198–200

 precision-based trials with binary 

outcomes, 209–210

Absolute risk reduction for binary data, 

141–142

Absolute risks

 Normal approximation, 141–142

 and odds ratios, 151–153

Absorption properties, 21

Accelerated failure time model, 262

Accrual period, 253–254

ACR (American College of 

Rheumatology) responder 

criteria, 30

ACR20, 30

Active control vs. placebo control, 98

Adaptive design, 63–69

Allocation at random, 1

Allocation ratios, 49, 74

 in cross-over trials, 75

Alternative hypothesis, 6, 7

American College of Rheumatology 

(ACR) responder criteria, 

30

Analysis approach

 dictates design, 139

 and sample size calculation, 175

Analysis of covariance (ANCOVA), 

51ff, 57

Analysis of variance (ANOVA) as 

primary analysis, 73ff

Anticipated responses, 146–148, 162

 and absolute risk difference, 183

Area under concentration curve (AUC), 

21, 22

As-good-as-or-better trials, 2

 binary and ordinal data, 239

 combination of non-inferiority and 

superiority trials, 27

 hypotheses in, 18–20

 and non-inferiority intent, 

105–106

 vs. other trial types, 95

 use superiority and non-inferiority 

trial methods, 196

Asymmetric effect of mean difference, 

97–99

AUC (Area under concentration 

curve), 21, 22

B

Balaam’s design, 109

Bartlett’s test, 39

Baseline

 with binary outcomes, 155–156

 as covariate, 56–57

 with Normal data, 155–156

 return to in cross-over trials, 3

 in sample size calculation, 52

 studies with, 54–57

Bayesian methods, 162–166
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 for cross-over designs, 177

 equivalence trials with binary 

outcomes, 205

 non-inferiority trials with binary 

outcomes, 191–192, 195

Between-subject variation, 56

Bias sensitivity, 3

Binary data outcomes, 35

 cross-over trials, 167ff

 equivalence trials, 197ff

 in equivalence trials, 197ff

 non-inferiority trials, 179ff

 population variability, 35

 superiority trials, 139ff

Binary methodology applied to cross-

over ordinal scale studies, 234

Binary responder endpoint ACR20, 30

Bioavailability demonstration trials, 20

Bioequivalence assessment, 24

Bioequivalence trials, 2, 20–24

 cross-over trials, 107ff

 hypothesis test, 6

 known variance, 107–109

 parallel group studies, 116ff

 replicate design, 112–113

 significance and confidence 

intervals, 41–42

 Type I error in, 22–23

Biomarkers study, 25

Blinded assessment of outcome, 1

Blinded re-estimation of sample size, 65

Bounding of absolute risk scale, 141ff

C

Censored subject, 262

 definition, 247

Central limit theorem, 3–5

Chi-squared distribution, 46–47

 and Bartlett’s test, 39

 continuity-corrected, 149–151

 odds ratio to quantify effect, 143

CHMP (Committee for Medicinal 

Products for Human Use), 17, 33

Chronic dizziness, 49ff

Clinical cut point, 218–220

Clinical difference variable

 for equivalence trials, 197

 for non-inferiority trials, 179

Clinical equivalence and 

bioequivalence trials, 20–24; 

see also Bioequivalence trials; 

Equivalence trials

Clinical significance, 10–11

Clinical trials

 with ordinal data, 215ff

  as-good-as-or-better trials, 239

  equivalence trials, 239ff

  estimation to a given precision, 

243ff

  non-inferiority trials, 236ff

  superiority trials, 217ff

 with survival data

  equivalence trials, 266ff

  non-inferiority trials, 264ff

  precision trials, 267ff

  superiority trials, 248ff

Closed test procedure, 19

Cluster randomised trials, 69–71

Coefficient of variation (CV), 23–24

Committee for Medicinal Products for 

Human Use (CHMP), 17, 33

Committee for Proprietary Medicinal 

Products, see CPMP

Completion rates of trials, 43

Components of variation, 56

Compound symmetry, 54

Concentration-time profiles, 20–21

 log transformation, 23

Conditional odds ratio, 168

 not marginal odds ratio, 172

Confidence interval

 for as-good-as-or-better trials, 18

 for bioequivalence, 22

 calculation of, 5

 half-width for precision of estimates, 

25, 123

 for hypothesis testing, 14

 for odds ratio, 143

 random effects, 30

 for two one-sided test (TOST), 14

Control response

 rate uncertainty, 159, 161, 163

 sensitivity of non-inferiority studies, 

10, 187–189

Control with respect to comparator 

group, 1

Co-primary data set, 87
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Covariates

 with Normal data, 155–156

 parallel group studies with binary 

outcomes, 155–156

 studies with, 54–57

CPMP Points to Consider on 

Multiplicity Issues in Clinical 

Trials, 25, 33

 as-good-as-or-better trial 

considerations, 18

Cross-over trials

 allocation ratios, 75

 with binary outcomes, 167ff

 discordant responses, 167

 equivalence trials, 195–196

  with normal data, 90ff

  with ordinal data, 241–242

 non-inferiority trials, 103–105

  with ordinal data, 238

 not applicable to degenerative 

conditions, 3

 ordinal scale data, 232–233

 parallel group methods used, 208

 parallel group studies, 171–172

  for long half-life compounds, 116

 precision-based trials, 133–136, 

244–245

  with binary outcomes, 214

 replicate design, 109–112

 return to baseline during, 3

 sample size for known population 

variance, 73ff

Cumulative distributions, 46

CV (Coefficient of variation), 23–24

D

Degenerative conditions not suitable 

for cross-over trials, 3

Density function, 46

Depression clinical trial, 37–40

Design

 for analysis, 139

 cluster-randomised, 69–71

 importance of, xix

 for preliminary studies, 123

Dichotomisation, 220–221, 237

Discordant responses in cross-over 

trials, 167

Discordant sample size, 170–171

Distribution-free techniques, 217

Dizziness Handicap Inventory, 50, 

79

Dropouts, 52–53

Drug interaction assessment, 22

E

Effect size of interest; see also 

Treatment effect

 determining, 28–34

 and P-value sought, 32

 and sample size, 6, 28

Elimination rate (l), 23

Endpoint; see also Primary endpoint

 deciding on, 28

 rate of change, 55

Epileptic seizure treatment worked 

example, 153–155

Equivalence limit, 33–34

Equivalence trials, 2

 with binary outcomes, 197ff

  cross-over trials, 208

  parallel group studies, 197ff

 and clinical importance, 10–11

 compared to other trial types, 14

 cross-over trials, 91–92

  using parallel group methods, 

208

 effect of zero mean difference on 

sample size, 97

 estimate of sample size, 84–85

 ICH standards, 14

 vs. non-inferiority trials, 95

 with Normal data, 83ff

 parallel group studies with ordinal 

data, 240

 sample size calculation, 13–16

 significance and confidence 

intervals, 41–42

 survival data with negative 

endpoint, 266–267

 Type I error in, 22–23

Estimating treatment effect, 29–30

Ethics of correct sample size, 2

Experimental design importance, xix

Exploratory studies, 25

Exponential survival, 249–250
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F

’Failed’ studies, 34

Failure time model, 262

False negative or positive, 10

Fisher’s exact test, 142, 144, 150, 151

Fixed-effect meta-analysis, 29

Fixed interim analysis, 64

Follow-up for fixed period, 253

Food assessment, 22

Frequentist approaches, 6ff

G

Gaussian distribution, see Normal 

distribution

Generalised Wilcoxon test, 248, 261

Group sequential design, 63

H

H0 null hypothesis, 6; see also Null 

hypothesis

H1 alternative hypothesis, 6

HADS (Hospital Anxiety and 

Depression Scale), 216

Hamilton Depression Scale (HAMD), 37

Hazard ratio (HR), definition, 248

Heteroskedasticity, definition, 40

Homogeneity and statistical analysis, 

46

Homoskedasticity, definition, 46

Hospital Anxiety and Depression Scale 

(HADS), 216

HR (Hazard ratio), definition, 248

Hypergeometric distribution, 144

Hypertension treatment trial, 99–100

Hypothesis test, 6

Hypothyroidism cross-over trial, 77–78

I

ICH (International Conference on 

Harmonization of Technical 

Requirements for Registration 

of Pharmaceuticals for 

Human Use)

 guidelines for sample size, 2

 ICH E3, 2, 14, 17

 ICH E9, 2, 14, 17, 43, 59–60

 ICH E10 , 14, 17, 33

IF, see Inflation factor (IF)

Individual bioequivalence, 24

Inflation factor (IF), 61, 63, 81

Intention to treat (ITT), 105

Interim analysis, 63–69

 Normal data, 156

International Conference on 

Harmonization of 

Technical Requirements 

for Registration of 

Pharmaceuticals for Human 

Use (ICH), see ICH

Intersection-union test (IUT), 14

Investigator’s risk, 12, 41–42

ITT (Intention to treat), 105

IUT (Intersection-union test), 14

J

Jeffrey’s prior, 162

K

Kaplan-Meier plot, 247, 248, 261

Known population estimates, 140

L

Last observation carried forward 

(LOCF) analysis, 57

‘Learning’ studies, 25

Limit setting, 33

LOCF (Last observation carried 

forward) analysis, 57

Log odds ratio, 143

Log-rank test, 248

Log transformation in 

concentration-time profile, 23

Long half-life compounds, 116

Loss to follow-up, 255

 survival data, 252

M

Mainland-Gartt test, 175

Mann-Whitney U test, 218

Margin, see Effect size of interest
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Marginal odds ratio not conditional 

odds ratio, 172

Maximum concentration, 21, 22

Maximum likelihood estimates, 183

McNemar test, 167, 174–176

Mean difference asymmetric effects, 

97–99

Mean ratio equalling unity, 109–110

 parallel group studies, 117–118

 sensitivity analysis of variance 

imprecision, 113–114, 121

Meta-analysis methodologies, 28–30

Minimum concentration, 22

Multinomial distribution, 144

N

Negative endpoint survival data, 

248–249

Negatively skewed data, 216–217

Negotiation of sample size, 58–59

Noether’s method, 223, 226, 245

 sample size for survival data, 

262–263

Non-centrality parameter, 47, 110

Non-central t-distribution

 calculation of power, 108

 sample size estimates from, 49

Non-inferiority limit

 and anticipated responses, 183

 vs. equivalence limit, 33–34

Non-inferiority margin, 33, 179, 

180–182, 236

 vs. odds ratio, 180–181

 stepped, 180–181

Non-inferiority trials, 2; see also 

As-good-as-or-better trials

 analysis of, 179

 with binary outcomes, 179ff

  as-good-as-or-better trials, 196

  choice of limit, 180–182

  cross-over trials, 195

  parallel group studies, 182ff

 and clinical importance, 10–11

 compared to other trial types, 14

 cross-over trials, 102

  using parallel group methods, 

195–196

 cross-over trials with ordinal data, 

238

 effect of true mean difference, 97

 vs. equivalence trials, 95

 formulae for, 16–17

 hypothesis test, 6

 ICH standards, 17

 imprecision of estimates, 192–195

 margin set from placebo-controlled 

superiority trial, 98

 misbelief that trials are unfeasibly 

large, 98

 non-zero difference between 

treatments, 197

 with Normal data, 95ff

 objective of, 236–237

 one-sided superiority test, 18–19

 with ordinal data, 236–237

 primary data set for, 105–106

 significance and confidence 

intervals, 41–42

 vs. superiority trials, 97–99, 187

 survival data, 264–266

 two-sided superiority test, 19–20

Non-informative prior, 163–164, 192, 195

Non-period odds ratio, 174–176

Normal approximation with continuity 

correction, 141–142

Normal data outcomes

 cross-over trials, 73ff

 equivalence trials, 83ff

 population variability, 36

 superiority trials, 45ff

Normal distribution, 3

 conversion of other distributions 

to, 39

 correction factor in cross-over 

trials, 76

 cumulative, 46

 and non-central t-distribution, 47

 sample size calculation, 45ff

 sample size for significance, 12

 and t-distribution plots, 48

 variables, 3

No treatment difference

 equivalence trials

  with binary outcomes, 200–201

  cross-over trials with Normal 

data, 92–94
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  with ordinal data, 240

  sample size, 85–86

 formulae for, 16

Null hypothesis, 6

 formulating, 7

 P-value, 7–8

 rejected for non-inferiority trials, 

17

 rejection of, 9–10

 testing against, 5–6

O

Objective of trials, 1

O’Brien-Fleming stopping rules, 64

Odds ratio (OR), 140, 142–143

 vs. absolute risk difference, 190

 and absolute risks, 151–153

 conditional vs. marginal, 172

 equivalence trials with binary 

outcomes, 201–202

 and imprecision of population 

effects, 160

 with known population effects, 

144–145

 non-inferiority studies with binary 

outcomes, 184–186

 non-period, 174–176

 with ordered categorical data, 218

 parallel group studies, 172

 precision-based trials with binary 

outcomes, 211–213

 and priors, 166

 and proportions, 211–213

 square rooted, 174–176

 vs. stepped non-inferiority margin, 

180–181

One-sided test, 7

 in non-inferiority trial, 17

One-tailed test, 7

Optimistic prior, 164–166

OR, see Odds ratio (OR)

Ordered categorical data, 218

Ordinal data outcomes, 215ff

 additional categories, 221–222, 

225–226, 231–232

 inappropriate for non-inferiority 

trials, 236–237

Osteoarthritis pain relief trial, 87

P

Paired t-tests, 74

Parallel group studies

 with binary outcomes, 198–200

 bioequivalence trials, 116ff

 cross-over trials comparison, 

171–172

 equivalence trials with Normal data, 

45ff, 83ff

 for long half-life compounds, 116

 methodology applied to cross-over 

ordinal scale studies, 234

 non-inferiority trials with Normal 

data, 95ff

 with Normal data, 45ff

 odds ratio, 172

 precision-based trials with Normal 

data, 124ff

 superiority trials, 139ff

Pearson correlation coefficient, 54, 76

Penalty for interim analysis, 64–65

Period-adjusted t-tests, 74–75, 

174–176

Per protocol (PP) data set, 87

Per protocol data set, 99

Pessimistic prior, 192, 195

Pharmacokinetics

 and replicate designs, 109–112

 as surrogate for safety and efficacy, 

107

Pilot trial, 25–26

Placebo-controlled superiority trial, 

98

Placebo control vs. active control, 98

Planned survival analysis, 247–248

Pocock stopping rules, 65

Poisson binomial, 144

Population as theoretical concept, 3

Population bioequivalence, 24

Population effects

 cross-over trials with binary data, 

176–177

 known for non-inferiority trials 

with ordinal data, 237

 in sample size calculation, 

159–161

 for superiority cross-over trials, 

168–170
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Positive endpoint survival data, 

260–262

Post-dose measures, 55–57

Posterior control response, 191–192

Posterior response, 162

Power level; see also Study power

 calculation using non-central 

t-distribution, 108

 cumulative distributions, 46

 sensitivity to sample size, 59–60

 to user, 43

PP data set, see Per protocol (PP) 

data set

Precision-based studies, 123ff

 with binary outcomes, 209ff

 cross-over trials, 133ff

 effect of imprecise variance, 

131–132

 equivalence trials with ordinal 

data, 243

 imprecision of variance, 128–129

 objective of, 210

 parallel group studies, 124ff

 for secondary objectives, 123

 survival data with negative 

endpoint, 267

Preliminary experimental design, 123

Prescott test, 175

Primary endpoint

 binary data, 139ff

 deciding on, 28

 and sample size, 6

Primary objective

 deciding on, 27

 and sample size, 6

Primary objective of trials, 1

Prior response, 162, 163, 164, 166

Probability distribution, 3

Process nature of determining sample 

size, xx

Progression-free survival, 251

Proportional hazards survival data, 

250–251

Proportional odds, 220

P-value

 definition, 7–8

 effect size and power sought, 32

 interpretation, 7–8

 sample size from, 53

R

Random effects, 30

Randomised trials, 69–71

Rate of change of endpoint, 55

Recruitment period, 253–254

Recruitment rate, 254–259

Re-estimation of sample size, 63–69

 for binary data, 156

Regulator’s risk, 12

Regulatory authority criteria 

variability, 22

Rejection of null hypothesis, 9–10

Replicate design, 109–112

Responder criteria, 30

Response rates and sample size 

calculations, 184–186

S

Sample estimates, 140

Sample size

 calculation for Normal distribution, 

12

 calculations using Bayesian 

methods, 177

 chosen for level of precision, 25

 in cluster-randomised trials, 

69–71

 dependent on planned analysis 

approach, 175

 discordant, 170–171

 effect of imprecise variance, 131

 effect size relationship, 28

 general case formulae, 15–16

 imprecision of estimates, 162–166

 as negotiation, 58–59

 as a process, xx

 re-estimation, 65

 for sufficient study power, 12

 when determined by practical 

considerations, 25

Sceptical prior, 164

Sensitivity analysis, 59–60

 bioequivalence trials, 113

 cross-over precision-based trials, 

133–134

 cross-over trial variance, 80

 equivalence trials, 87
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 equivalence trials with binary 

outcomes, 203

 equivalence trials with ordinal data, 

240–242

 estimates of population effects, 235

 for non-inferiority trials, 100–101

 non-inferiority trials with ordinal 

data, 238

 population effect in cross-over with 

binary data, 176–177

 population effects with binary data, 

157

 population effects with binary data 

ordinal scale data, 226–228

 precision-based equivalence trials 

with ordinal data, 244

 for precision-based trial, 127

 precision-based trials with binary 

outcomes, 213–214

Sensitivity to assumptions, 260

Significance test, 7

Society’s risk, 41

Square rooted odds ratio, 174–176

Standard deviation and true sampling 

value, 61

Standardised differences, 31

Standardised effects, 32

Statistical distributions, 3

Statistical significance

 of P-value, 8–9

 of threshold levels, 9

Step-down procedure, 237

Stepped non-inferiority margin, 

180–181

Stopping rules

 O’Brien-Fleming, 64

 Pocock, 65

Student’s non-central t-distribution, 47

Study power, 10; see also Power level

 1-probability of Type II error, 12

 with multiple endpoints, 22

Superiority trials, 2

 calculation of P-value, 6

 compared to other trial types, 14

 cross-over trials with binary 

outcomes, 167ff

 cross-over trials with Normal data, 

73ff

 and hypothesis test, 6

 hypothesis tests, 11–13

 intention to treat, 105–106

 vs. non-inferiority trials, 97–99

 vs. non-inferiority trials, 99

 vs. non-inferiority trials, 187

 parallel group, 45ff

 parallel group trials with binary 

outcomes, 139ff

 parallel group trials with ordinal 

data, 217ff

 survival data with negative 

endpoint, 248–249

 survival data with positive 

endpoint, 260–262

‘Super studies’ and significance levels, 

9

Survival data outcomes, 247ff

 sample size, 252

Symmetry, compound, 54

T

t-distribution

 cumulative, 46

 definition, 46–47

 non-central, 47

  sample size estimates from, 49

 from Normal and chi-squared 

distributions, 46–47

 and Normal distribution plots, 48

Three-arm trial, 27

Time above minimum inhibitory 

concentration, 22

Time-concentration profiles, see 

Concentration-time profiles

Time course of a trial and sample size, 

253

Time to cure, 260

Time to remission, 260

Time to target level of biomarker, 260

TOST (Two one-sided test) procedure, 

see Two one-sided test (TOST) 

procedure
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Treatment difference lacking formulae, 

16

Treatment effect; see also Effect size of 

interest

 estimate of, 28–29

 selection of, 30

Trials

 completion rates of, 43

 determining objective, 27

 to a given precision, 2

 goal to evaluate population 

responses, 26

 type differences, 2

Truncated exponential recruitment, 

257–258

t-statistic vs. Z-statistic, 46

t-tests

 paired, 74

 period-adjusted, 74–75, 174–176

t-values, 52

Two-group analysis, 175

Two one-sided test (TOST) procedure, 

14

 formulae for, 15–16

Two-period replicate design, 109–112

Two-point response trials, 139ff

Two-sided test, 7

Two-tailed a-level test, 45ff

Two-tailed test, 7

Type I error

 in bioequivalence trial, 22–23

 concept history, 12

 in equivalence trial, 22–23

 false positive, 10

 interim analysis to maintain, 64

 in limit setting, 33

 and reduced sample size, 58–59

Type II error

 concept history, 12

 in equivalence trials, 83–84

 false negative, 10

 investigator’s risk, 41–42

 for precision-based trial 

calculations, 125

 and reduced sample size, 58–59

 in terms of power, 15

U

Unequal variance, 46

Unethical nature of incorrect sample 

size, 2

Uniform recruitment, 256–257

V

Variance

 baseline as covariate, 56–57

 equal, 45–46

 formula for baseline measures, 54

Variance by hypothesis, 148–149

Variance estimate

 across multiple studies, 37

 from full model, 55

 from previous similar studies, 61

 from retrospective data of similar 

studies, 34–35

Variances unequal, 46

Variation, components of, 55

VAS, see Visual analogue scale (VAS)

Vestibular rehabilitation worked 

example, 49ff

Visual analogue scale (VAS), 30, 31, 87

W

Wald method, 141

Western Ontario and McMaster 

University Osteoarthritis 

Index (WOMAC), 30

Whitehead’s method, 217–218, 245

 sample size for survival data, 262

Within-subject errors, 55

Within-subject standard deviation, 

75

Within-subject variation, 56

WOMAC, 30

“Wonder” effects, 64

Z

Z-statistic vs. t-statistic, 46

Z-values, 52
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